Physics of Atomic Nuclei

, Volume 73, Issue 2, pp 209–213

Symmetric spaces of exceptional groups

Elementary Particles and Fields Theory
  • 48 Downloads

Abstract

We address the problem of the reasons for the existence of 12 symmetric spaces with the exceptional Lie groups. The 1 + 2 cases for G2 and F4, respectively, are easily explained from the octonionic nature of these groups. The 4 + 3 + 2 cases on the E6,7,8 series require the magic square of Freudenthal and, for the split case, an appeal to the supergravity chain in 5, 4, and 3 space—time dimensions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Helgason, Differential Geometry and Symmetric Spaces (Academic, New York), 1962).MATHGoogle Scholar
  2. 2.
    U. Magnea, cond-mat/0205288.Google Scholar
  3. 3.
    L. J. Boya, IOP Conf. Ser. 173, 245 (2003).ADSGoogle Scholar
  4. 4.
    J. C. Baez, Bull. Am. Math. Soc. 39, 145 (2002).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Ramond, Preprint CALT-68-577, Caltech (ntPasadena), 1976).Google Scholar
  6. 6.
    L. J. Boya, Rep. Math. Phys. 30, 149 (1991).MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    H. Freudenthal, Adv. Math. 1, 145 (1965).CrossRefMathSciNetGoogle Scholar
  8. 8.
    E. Cremmer, B. Julia, and J. Scherk, Phys. Lett. B 76, 409 (1978).CrossRefADSGoogle Scholar
  9. 9.
    J. F. Adams, Lectures on Exceptional Lie Groups (Univ. Chicago, Chicago), 1978).Google Scholar
  10. 10.
    S. Ferrara and A. Marrani, arXiv: 0808.3567 [hep-th].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations