Physics of Atomic Nuclei

, Volume 73, Issue 1, pp 1–8 | Cite as

On the energy of the 3.5-eV level in 229Th

  • S. L. Sakharov
Nuclei Experiment


Values determined in several studies for the first isomeric state of 229Th as 3.5(10), 3.4(18), 5.5(10), and 7.6(5) eV differ markedly from one another. A comparison of the first two studies that was performed in the present article indicates that there is a systematic error in the energies of the transitions in 229Th. It is shown that each of the first two values is dependent on the placement or energy of only one transition (or on both of these two factors). The third value, that of 5.5(10) eV, is not independent, since it is a result of rather complicated calculations for the scheme of energy levels in 229Th with allowance for the first two studies. It is shown that the accuracy in determining the error in 7.6(5) eV is likely to be exaggerated. It is concluded that the energy of the 3.5-eV state ranges between 0 and 15 eV.


Atomic Nucleus Transition Energy Isomeric State Kroger 229Th Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. T. Inamura and H. Haba, Phys. Rev. C 79, 034313 (2009).CrossRefADSGoogle Scholar
  2. 2.
    L. A. Kroger and C. W. Reich, Nucl. Phys. A 259 29 (1976).CrossRefADSGoogle Scholar
  3. 3.
    C. W. Reich and R. G. Helmer, Phys. Rev. Lett. 64, 271 (1990).CrossRefADSGoogle Scholar
  4. 4.
    R. G. Helmer and C.W. Reich, Phys. Rev. C 49, 1845 (1994).CrossRefADSGoogle Scholar
  5. 5.
    B. R. Beck, J. A. Becker, P. Beiersdorfer, et al., Phys. Rev. Lett. 98, 142501 (2007).CrossRefADSGoogle Scholar
  6. 6.
    V. V. Flambaum and R. B. Wiringa, Phys. Rev. C 79, 034302 (2009).CrossRefADSGoogle Scholar
  7. 7.
    D. S. Richardson, D. M. Benton, D. E. Evans, et al., Phys. Rev. Lett. 80, 3206 (1998).CrossRefADSGoogle Scholar
  8. 8.
    S. B. Utter, P. Beiersdorfer, A. Barnes, et al., Phys. Rev. Lett. 82, 505 (1999).CrossRefADSGoogle Scholar
  9. 9.
    T. Mitsugashira, H. Hara, T. Ohtsuki, et al., J. Radioanal. Nucl. Chem. 255, 63 (2003).CrossRefGoogle Scholar
  10. 10.
    V. Barci, G. Ardisson, G. Barci-Funel, et al., Phys. Rev. C 68, 034329 (2003).CrossRefADSGoogle Scholar
  11. 11.
    Z. O. Guimaraes-Filho, O. Helene and P. R. Pascholati, AIP Conf. Proc. 769, 257 (2005).CrossRefADSGoogle Scholar
  12. 12.
    Z. O. Guimaraes-Filho and O. Helene, Phys. Rev. C 71, 044303 (2005).CrossRefADSGoogle Scholar
  13. 13.
  14. 14.
    E. Ruchowska, W. A. Plociennik, J. Žylicz, et al., Phys. Rev. C 73, 044326 (2006).CrossRefADSGoogle Scholar
  15. 15.
    R. B. Firestone, S. Y. F. Chu, and C. M. Baglin, Table of Isotopes CD-ROM, 8th ed. (Wiley, New York, 1999).Google Scholar
  16. 16.
    K. Gulda, W. Kurcewicz, A. J. Aas, et al., Nucl. Phys. A 703, 45 (2002).CrossRefADSGoogle Scholar
  17. 17.
    E. Browne and J. K. Tuli, Nuclear Data Sheets 109, 2657 (2008).CrossRefADSGoogle Scholar
  18. 18.
    D. G. Burke, P. E. Garrett, Tao Qu, and R. A. Naumann, Nucl. Phys. A 809, 129 (2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. L. Sakharov
    • 1
  1. 1.Petersburg Nuclear Physics InstituteRussian Academy of SciencesGatchinaRussia

Personalised recommendations