Physics of Atomic Nuclei

, Volume 72, Issue 4, pp 638–646 | Cite as

The S-D mixing and dielectron widths of higher charmonium 1−− states

  • A. M. Badalian
  • B. L. G. Bakker
  • I. V. Danilkin
Elementary Particles and Fields Theory

Abstract

The dielectron widths of ψ(4040), ψ(4160), and ψ(4415), and their ratios are shown to be in good agreement with experiment, if in all cases the S-D mixing with a large mixing angle θ ≅ 34° is taken. Arguments are presented why continuum states give small contributions to the wave functions at the origin. We find that the Y (4360) resonance, considered as a pure 3 3D1 state, would have very small dielectron width, Γee(Y (4360)) = 0.060 keV. On the contrary, for large mixing between the 4 3S1 and 3 3D1 states with the mixing angle θ = 34.8°, Γee(ψ(4415)) = 0.57 keV coincides with the experimental number, while a second physical resonance, probably Y (4360), has also a rather large Γee(Y (∼4400)) = 0.61 keV. For the higher Y (4660) resonance, considered as a pure 5 3S1 state, we predict the dielectron width Γee(Y (4660)) = 0.70 keV, but it becomes significantly smaller, namely 0.31 keV, if the mixing angle between the 5 3S1 and 4 3D1 states has the characteristic value θ = 34°. The mass and dielectron width of the 6 3S1 charmonium state are calculated.

PACS numbers

12.40.Yx 13.20.He 14.40.Nd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Badalian, B. L. Ioffe, and A. V. Smilga, Nucl. Phys. B 281, 85 (1987).CrossRefADSGoogle Scholar
  2. 2.
    E. van Beveren and G. Rupp, Phys. Rev. Lett. 91, 012003 (2003); D. S. Hwang and D. W. Kim, Phys. Lett. B 601, 137 (2004); Yu. A. Simonov and J. A. Tjon, Phys. Rev. D 70, 114013 (2004).Google Scholar
  3. 3.
    J. L. Rosner, Phys. Rev. D 64, 094002 (2001).Google Scholar
  4. 4.
    Y. P. Kuang and T. M. Yan, Phys. Rev. D 41, 155 (1990); Y. B. Ding, D. H. Qin, and K. T. Chao, Phys. Rev. D 44, 3562 (1991); K. Y. Liu and K. T. Chao, hep-ph/0405126.CrossRefADSGoogle Scholar
  5. 5.
    J. Z. Bai et al. (BES Collab.), Phys. Lett. B 355, 374 (1995); M. Ablikim et al., arXiv:0705.4500 [hep-ex].CrossRefADSGoogle Scholar
  6. 6.
    G. S. Adams et al. (CLEO Collab.), Phys. Rev. D 73, 051103 R (2006); D. Besson et al., Phys. Rev. Lett. 96, 092002 (2006); hep-ex/0408010.Google Scholar
  7. 7.
    B. Aubert et al. (BABAR Collab.), Phys. Rev. D 69, 111103 (2004); hep-ex/0405028.Google Scholar
  8. 8.
    K. K. Seth, Phys. Rev. D 72, 017501 (2005); hepex/0405007.Google Scholar
  9. 9.
    W.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).CrossRefADSGoogle Scholar
  10. 10.
    T. Barnes, hep-ph/0406327.Google Scholar
  11. 11.
    A. M. Badalian and B. L. G. Bakker, Phys. Lett. B 646, 29 (2007); A. M. Badalian, A. I. Veselov, and B. L. G. Bakker, J. Phys. G 31, 417 (2005).CrossRefADSGoogle Scholar
  12. 12.
    A. M. Badalian and B. L.G. Bakker, Phys. At. Nucl. 70, 1764 (2007); hep-ph/0604243.CrossRefGoogle Scholar
  13. 13.
    E. J. Eichten and C. Quigg, Phys. Rev. D 52, 1726 (1995).CrossRefADSGoogle Scholar
  14. 14.
    E. J. Eichten, K. Lane, and C. Quigg, Phys. Rev. D 73, 014014, 079903 (Erratum) (2006); 69, 094019 (2004).Google Scholar
  15. 15.
    G. J. Ding, J. J. Zhu, and M. L. Yan, arXiv: 0708.3712 [hep-ex].Google Scholar
  16. 16.
    X. L. Wang et al. (Belle Collab.), arXiv: 0707.3699 [hep-ex].Google Scholar
  17. 17.
    B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 98, 212001 (2007); hep-ex/0610057.Google Scholar
  18. 18.
    T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72, 054026 (2006).Google Scholar
  19. 19.
    A. Yu. Dubin, A. B. Kaidalov, and Yu. A. Simonov, Phys. At. Nucl. 56, 1745 (1993); Phys. Lett. B 323, 41 (1994).Google Scholar
  20. 20.
    A. M. Badalian and B. L. G. Bakker, Phys. Rev. D 66, 034025 (2002).Google Scholar
  21. 21.
    Yu. A. Simonov, hep-ph/9911237; Yu. S. Kalashnikova, A. V. Nefediev, and Yu. A. Simonov, Phys. Rev. D 64, 014037 (2001).Google Scholar
  22. 22.
    A. M. Badalian and D. S. Kuzmenko, Phys. Rev. D 65, 016004 (2002); A. M. Badalian and Yu. A. Simonov, Phys. At. Nucl. 60, 630 (1997).Google Scholar
  23. 23.
    A. M. Badalian and I. V. Danilkin, arXiv:0801.1614 [hep-ph].Google Scholar
  24. 24.
    A. M. Badalian, B. L. G. Bakker, and Yu. A. Simonov, Phys. Rev. D 66, 034026 (2002).Google Scholar
  25. 25.
    A. M. Badalian, B. L. G. Bakker, and Yu. A. Simonov, Phys. Rev. D 75, 116001 (2007).Google Scholar
  26. 26.
    V. A. Novikov et al., Phys. Rep. C 41, 1 (1978).CrossRefADSGoogle Scholar
  27. 27.
    R. van Royen and V. F. Weisskopf, Nuovo Cim. A 50, 617 (1967); 51, 583 (1967).CrossRefADSGoogle Scholar
  28. 28.
    K. T. Chao, Phys. Lett. B 661, 348 (2008).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. M. Badalian
    • 1
  • B. L. G. Bakker
    • 2
  • I. V. Danilkin
    • 3
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Department of Physics and AstronomyVrije UniversiteitAmsterdamThe Netherlands
  3. 3.Moscow Engineering Physics InstituteMoscowRussia

Personalised recommendations