Advertisement

Physics of Atomic Nuclei

, Volume 71, Issue 12, pp 2039–2051 | Cite as

Deuteron-proton elastic scattering at intermediate energies

  • N. B. LadyginaEmail author
Nuclei Theory

Abstract

The deuteron-proton elastic scattering has been studied in the multiple-scattering expansion formalism. Primary attention has been given to such relativistic problems as a deuteron wave function in a moving frame and transformation of spin states due to Wigner rotation. Parametrization of the nucleon—nucleon t matrix has been used to take the off-energy-shell effects into account. The vector, A y , and tensor, A yy , analyzing powers of the deuteron have been calculated at two deuteron kinetic energies: 395 and 1200 MeV. The obtained results are compared with the experimental data.

PACS numbers

21.45.+v 25.45.-z 25.45.De 24.10.Jv 24.70.+s 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Garcon et al., Nucl. Phys. A 458, 287 (1986).CrossRefADSGoogle Scholar
  2. 2.
    J. Arvieux et al., Nucl. Phys. A 431, 613 (1984).CrossRefADSGoogle Scholar
  3. 3.
    M. Haji-Saied et al., Phys. Rev. C 36, 2010 (1987).CrossRefADSGoogle Scholar
  4. 4.
    Sun Tsu-hsun et al., Phys. Rev. C 31, 515 (1985).CrossRefADSGoogle Scholar
  5. 5.
    A. Rahbar et al., Phys. Lett. B 194, 338 (1987).CrossRefADSGoogle Scholar
  6. 6.
    V. Ghazikhanian et al., Phys. Rev. C 43, 1532 (1991).CrossRefADSGoogle Scholar
  7. 7.
    W. Glöckle et al., Phys. Rep. 274, 110 (1996).CrossRefGoogle Scholar
  8. 8.
    G. Alberi, M. Bleszynski, and T. Jaroszewicz, Ann. Phys. (N.Y.) 142, 299 (1982).CrossRefADSGoogle Scholar
  9. 9.
    M. Bleszynski et al., Phys. Lett. B 106, 42 (1981).CrossRefADSGoogle Scholar
  10. 10.
    R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1 (1987).CrossRefGoogle Scholar
  11. 11.
    R. Machleidt, Phys. Rev. C 63, 024001 (2001).Google Scholar
  12. 12.
    M. Lacombe et al., Phys. Rev. C 21, 861 (1980).CrossRefADSGoogle Scholar
  13. 13.
    V. G. J. Stoks et al., Phys. Rev. C 49, 2950 (1994).CrossRefADSGoogle Scholar
  14. 14.
    R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).CrossRefADSGoogle Scholar
  15. 15.
    T. S. H. Lee, Phys. Rev. C 29, 195 (1984).CrossRefADSGoogle Scholar
  16. 16.
    E. E. van Faassen and J. A. Tjon, Phys. Rev. C 30, 285 (1984).CrossRefADSGoogle Scholar
  17. 17.
    Ch. Elster and P. C. Tandy, Phys. Rev. C 40, 881 (1989).CrossRefADSGoogle Scholar
  18. 18.
    V. I. Kukulin et al., J. Phys. G 27, 1852 (2001).CrossRefADSGoogle Scholar
  19. 19.
    V. A. Knyr, V. G. Neudatchin, and N. A. Khokhlov, Phys. At. Nucl. 69, 2034 (2006).CrossRefGoogle Scholar
  20. 20.
    R. Fong, J. Sucher, J. Math. Phys. 5, 456 (1964).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    E. P. Wigner, Nuovo Cimento 3, 517 (1956).zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    L. L. Foldy, Phys. Rev. 122, 275 (1961).CrossRefADSGoogle Scholar
  24. 24.
    B. D. Keister and W. N. Polyzou, Adv. Nucl. Phys. 20, 225 (1991).Google Scholar
  25. 25.
    H. Witala et al., Phys. Rev. C 71, 054001 (2005).Google Scholar
  26. 26.
    T. Lin et al., nucl-th/0702005.Google Scholar
  27. 27.
    W. W. Buck and F. Gross, Phys. Rev. D 20, 2361 (1979).CrossRefADSGoogle Scholar
  28. 28.
    B. D. Keister and J. A. Tjon, Phys. Rev. C 26, 578 (1982).CrossRefADSGoogle Scholar
  29. 29.
    L. P. Kaptari et al., Phys. Rev. C 57, 1097 (1998).CrossRefADSGoogle Scholar
  30. 30.
    M. Lacombe et al., Phys. Lett. B 101, 139 (1981).CrossRefADSGoogle Scholar
  31. 31.
    V. A. Karmanov, Nucl. Phys. A 362, 331 (1981).CrossRefADSGoogle Scholar
  32. 32.
    V. A. Karmanov, Fiz. Elem. Chastits At. Yadra 19, 525 (1988) [Sov. Phys. Part. Nucl. 19, 228 (1988)].Google Scholar
  33. 33.
    J. Carbonell and V. A. Karmanov, Nucl. Phys. A 581, 625 (1995).CrossRefADSGoogle Scholar
  34. 34.
    W. G. Love and M. A. Franey, Phys. Rev. C 24, 1073 (1981); Phys. Rev. C 31, 488 (1985).CrossRefADSGoogle Scholar
  35. 35.
    E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B 2, 167 (1967).CrossRefADSGoogle Scholar
  36. 36.
    E. Schmid and H. Ziegelmann, The Quantum Mechanical Three-Body Problem (Oxford, Pergamon Press, 1974).Google Scholar
  37. 37.
    V. I. Ritus, Zh. Eksp. Teor. Fiz. 40, 352 (1961) [Sov. Phys. JETP 13, 240 (1961)].MathSciNetGoogle Scholar
  38. 38.
    N. B. Ladygina and A. V. Shebeko, Few-Body Syst. 33, 49 (2003).CrossRefADSGoogle Scholar
  39. 39.
    N. B. Ladygina and A. V. Shebeko, Eur. Phys. J. A 22, 29 (2004).CrossRefADSGoogle Scholar
  40. 40.
    H. Garcilazo, Phys. Rev. C 16, 1996 (1977).CrossRefADSGoogle Scholar
  41. 41.
  42. 42.
    P. K. Kurilkin et al., in Proceedings of the 18th International Baldin Seminar on High-Energy Physics Problems “Relativistic Nuclear Physics and Quantum Chromodynamics,” 25–30 Sept. 2006, Dubna, Russia (to be published); K. Suda et al., AIP Conf. Proc. 915, 920 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations