Physics of Atomic Nuclei

, Volume 71, Issue 1, pp 111–116 | Cite as

New constraints on spin-dependent WIMP-neutron interactions from HDMS with natural Ge and 73Ge

  • V. A. Bednyakov
  • H. V. Klapdor-Kleingrothaus
  • I. V. Krivosheina
Elementary Particles and Fields Experiment

Abstract

In the mixed spin-scalar coupling approach the data from HDMS (Heidelberg Dark Matter Search) experiments performed in the years 1996, 1997, 2001–2003 both with natural Ge and with enriched 73Ge were simultaneously analyzed. This analysis together with a new procedure for background identification and subtraction from the measured 73Ge spectrum allowed us to obtain a significant (about one order of magnitude) improvement for the limits on the WIMP-neutron spin-dependent coupling. As a result, the HDMS experiment is now giving the most sensitive limits on the WIMP-neutron spin coupling for WIMP masses larger than 60–65 GeV/c2.

PACS numbers

11.30.Pb 12.60.Jv 95.35.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. W. Goodman and E. Witten, Phys. Rev. D 31, 3059 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep. 267, 195 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    J. D. Lewin and P. F. Smith, Astropart. Phys. 6, 87 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Bednyakov, H. V. Klapdor-Kleingrothaus, and S. Kovalenko, Phys. Rev. D 50, 7128 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    V. A. Bednyakov, H. V. Klapdor-Kleingrothaus, and S. Kovalenko, Phys. Rev. D 55, 503 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    V. A. Bednyakov and H. V. Klapdor-Kleingrothaus, Phys. Rev. D 59, 023514 (1999).Google Scholar
  7. 7.
    V. A. Bednyakov and H. V. Klapdor-Kleingrothaus, Phys. Rev. D 63, 095005 (2001).Google Scholar
  8. 8.
    V. A. Bednyakov, S. G. Kovalenko, H. V. Klapdor-Kleingrothaus, and Y. Ramachers, Z. Phys. A 357, 339 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    V. A. Bednyakov and H. V. Klapdor-Kleingrothaus, Phys. Rev. D 70, 096006 (2004).Google Scholar
  10. 10.
    P. Gondolo, hep-ph/0501134; in Proceedings of DARK 2004, Texas, 2004, Ed. by H. V. Klapdor-Kleingrothaus and R. Arnowitt (Springer, Heidelberg, 2005), p. 610.Google Scholar
  11. 11.
    R. Bernabei et al., Phys. Lett. B 480, 23 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    R. Bernabei et al., Riv. Nuovo Cimento 26, 1 (2003).Google Scholar
  13. 13.
    R. Bernabei et al., Phys. Lett. B 509, 197 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    V. A. Bednyakov and H. V. Klapdor-Kleingrothaus, hep-ph/0504031; in Proceedings of DARK 2004, Texas, 2004, Ed. by H. V. Klapdor-Kleingrothaus and R. Arnowitt (Springer, Heidelberg, 2005), p. 583.Google Scholar
  15. 15.
    H. V. Klapdor-Kleingrothaus et al., hep-ph/0103077; in Proceedings of IDM2000, York, England, 2000 (World Sci., Singapore, 2001), p. 415.Google Scholar
  16. 16.
    C. Tomei, PhD Thesis (Univ. of L’Aquila, Italy, 2004); L. Baudis, A. Dietz, B. Majorovits, et al., Phys. Rev. D 63, 022001 (2001); H. V. Klapdor-Kleingrothaus et al., in Proceedings of Dark2000, Heidelberg, 2000, Ed. by H. V. Klapdor-Kleingrothaus (Springer, Heidelberg; New York, 2001), p. 553.Google Scholar
  17. 17.
    H. V. Klapdor-Kleingrothaus et al., Astropart. Phys. 18, 525 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, and C. Tomei, Phys. Lett. B 609, 226 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    Heidelberg-Moscow Collab., Phys. Rev. D 59, 022001 (1999).Google Scholar
  20. 20.
    A. Kinkhabwala and M. Kamionkowski, Phys. Rev. Lett. 82, 4172 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    F. Donato, N. Fornengo, and S. Scopel, Astropart. Phys. 9, 247 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    N. W. Evans, C. M. Carollo, and P. T. de Zeeuw, Mon. Not. R. Astron. Soc. 318, 1131 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    C. J. Copi and L. M. Krauss, Phys. Rev. D 63, 043507 (2001).Google Scholar
  24. 24.
    P. Ullio and M. Kamionkowski, J. High Energy Phys. 03, 049 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    C. J. Copi and L. M. Krauss, Phys. Rev. D 67, 103507 (2003).Google Scholar
  26. 26.
    A. Kurylov and M. Kamionkowski, Phys. Rev. D 69, 063503 (2004).Google Scholar
  27. 27.
    D. Tucker-Smith and N. Weiner, Phys. Rev. D 72, 063509 (2005).Google Scholar
  28. 28.
    C. Savage, P. Gondolo, and K. Freese, Phys. Rev. D 70, 123513 (2004).Google Scholar
  29. 29.
    P. Gondolo and G. Gelmini, Phys. Rev. D 71, 123520 (2005).Google Scholar
  30. 30.
    M. T. Ressell et al., Phys. Rev. D 48, 5519 (1993).ADSCrossRefGoogle Scholar
  31. 31.
    D. S. Akerib et al. (CDMS Collab.), Phys. Rev. D 73, 011102 (2006).Google Scholar
  32. 32.
    R. Bernabei et al., Phys. Lett. B 436, 379 (1998).ADSCrossRefGoogle Scholar
  33. 33.
    C. E. Aalseth et al., Phys. At. Nucl. 63, 1268 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. A. Bednyakov
    • 1
  • H. V. Klapdor-Kleingrothaus
    • 2
  • I. V. Krivosheina
    • 3
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany
  3. 3.Institute of Radiophysical ResearchNizhni NovgorodRussia

Personalised recommendations