Physics of Atomic Nuclei

, Volume 70, Issue 8, pp 1357–1362 | Cite as

Neutron skin thickness and nuclear matter properties

Nuclei Theory
  • 92 Downloads

Abstract

Linear correlations are found among the isovector nuclear matter properties in both the Skyrme-Hartree-Fock (SHF) and the relativistic mean-field (RMF) models. In addition, we found a kind of correlation between the isovector nuclear matter properties and the incompressibility in the SHF model. The Skyrme parameters are related analytically to nuclear matter properties with the Thomas—Fermi approximation. By using a linear correlation between the neutron skin thickness and the pressure of the neutron matter in the SHF model, we show that the neutron skin thickness of 208Pb gives crucial information about not only the neutron equation of state but also the isovector nuclear matter properties and the parametrization of Skyrme interaction.

PACS numbers

21.30.-x 21.60.-n 21.60.Jz 21.65.+f 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).CrossRefADSGoogle Scholar
  2. 2.
    J. D. Walecka, Ann. Phys. (N.Y.) 83, 469 (1974).CrossRefGoogle Scholar
  3. 3.
    P. G. Reinhard et al., Z. Phys. A 323, 13 (1986).Google Scholar
  4. 4.
    B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).CrossRefADSGoogle Scholar
  5. 5.
    R. J. Furnstahl, Nucl. Phys. A 706, 85 (2002).CrossRefADSGoogle Scholar
  6. 6.
    S. Typel and B. A. Brown, Phys. Rev. C 64, 027302 (2001).CrossRefADSGoogle Scholar
  7. 7.
    S. Yoshida and H. Sagawa, Phys. Rev. C 69, 024318 (2004).Google Scholar
  8. 8.
    T. H. R. Skyrme, Nucl. Phys. 9, 615 (1958–1959).Google Scholar
  9. 9.
    M. Beiner et al., Nucl. Phys. A 238, 29 (1975).CrossRefADSGoogle Scholar
  10. 10.
    H. S. Köhler, Nucl. Phys. A 258, 301 (1976).CrossRefADSGoogle Scholar
  11. 11.
    H. Krivine, J. Treiner, and O. Bohigas, Nucl. Phys. A 336, 155 (1980).CrossRefADSGoogle Scholar
  12. 12.
    J. Bartel et al., Nucl. Phys. A 386, 79 (1982).CrossRefADSGoogle Scholar
  13. 13.
    P.-G. Reinhard and H. Flocard, Nucl. Phys. A 584, 467 (1995).CrossRefADSGoogle Scholar
  14. 14.
    E. Chabanat et al., Nucl. Phys. A 635, 231 (1998).CrossRefADSGoogle Scholar
  15. 15.
    M. M. Sharma et al., Phys.Rev. Lett. 74, 3744 (1995).CrossRefADSGoogle Scholar
  16. 16.
    B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000), and private communication.CrossRefADSGoogle Scholar
  17. 17.
    N. Van Giai and H. Sagawa, Phys. Lett. B 106, 379 (1981).CrossRefADSGoogle Scholar
  18. 18.
    G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540 (1997).CrossRefADSGoogle Scholar
  19. 19.
    M. M. Sharma, M. A. Nagarajan, and P. Ring, Phys. Lett. B 312, 377 (1993).CrossRefADSGoogle Scholar
  20. 20.
    B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).CrossRefADSGoogle Scholar
  21. 21.
    Y. Sugawara and H. Toki, Nucl. Phys. A 579, 557 (1994).CrossRefADSGoogle Scholar
  22. 22.
    T. Nikšić et al., Phys. Rev. C 66, 024306 (2002).Google Scholar
  23. 23.
    G. A. Lalazissis et al., Phys. Rev. C 71, 024312 (2005).Google Scholar
  24. 24.
    D. H. Youngblood, H. L. Clark, and Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999).CrossRefADSGoogle Scholar
  25. 25.
    M. Uchida et al., Phys. Rev. C 69, 051301(R) (2004).Google Scholar
  26. 26.
    B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502 (1981).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Science Research CenterHosei UniversityTokyoJapan
  2. 2.Center for Mathematical ScienceUniversity of AizuFukushimaJapan

Personalised recommendations