Advertisement

Physics of Atomic Nuclei

, Volume 70, Issue 3, pp 560–566 | Cite as

Equivalence of superintegrable systems in two dimensions

  • J. M. Kress
Second International Workshop on Superintegrable Systems in Classical and Quantum Mechanics Theory

Abstract

In two dimensions, all nondegenerate superintegrable systems having constants quadratic in the momenta possess a quadratic algebra. In this paper, it is shown how the quadratic algebra can be used to classify all such systems into seven classes that are preserved by coupling constant metamorphosis.

PACS numbers

02.30.Ik 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Kalnins, J. M. Kress, and W. Miller, Jr., J. Math. Phys. 46, 053509 (2005).Google Scholar
  2. 2.
    E. G. Kalnins, J. M. Kress, and W. Miller, Jr., J. Math. Phys. 46, 053510 (2005).Google Scholar
  3. 3.
    J. Hietarinta, B. Grammaticos, B. Dorizzi, and A. Ramani, Phys. Rev. Lett. 53, 1707 (1984).CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    C. P. Boyer, E. G. Kalnins, and W. Miller, SIAM J. Math. Anal. 17, 778 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    C. Daskaloyannis and K. Ypsilantis, math-ph/0412055.Google Scholar
  6. 6.
    J. Friš, V. Mandrosov, Ya. A. Smorodinsky, et al., Phys. Lett. 16, 354 (1965).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    N. W. Evans, Phys. Rev. A 41, 5666 (1990).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    C. Daskaloyannis, J. Math. Phys. 42, 1100 (2001).zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    G. Koenigs, Leçons sur la theorie generale des surfaces (Paris, 1972), Vol. 4, p. 368.Google Scholar
  10. 10.
    E. G. Kalnins, J. M. Kress, W. Miller, Jr., and G. S. Pogosyan, J. Phys. A 34, 4705 (2001).zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    E. G. Kalnins, J. M. Kress, and P. Winternitz, J. Math. Phys. 43, 970 (2002).zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    E. G. Kalnins, J. M. Kress, W. Miller, Jr., and P. Winternitz, J. Math. Phys. 44, 5811 (2003).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    P. Collas, Phys. Lett. A 135, 151 (1989).CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • J. M. Kress
    • 1
  1. 1.School of MathematicsThe University of New South WalesSydneyAustralia

Personalised recommendations