Advertisement

Physics of Atomic Nuclei

, Volume 69, Issue 12, pp 2109–2116 | Cite as

Scintillating double-beta-decay bolometers

  • S. Pirro
  • J. W. Beeman
  • S. Capelli
  • M. Pavan
  • E. Previtali
  • P. Gorla
Proceedings of the 5th International Conference on NONACCELERATOR NEW PHYSICS Double-Beta Decay and Rare Processes

Abstract

We present the results obtained in the development of scintillating double-beta-decay bolometers. Several Mo and Cd based crystals were tested with the bolometric technique. The scintillation light was measured through a second independent bolometer. A 140-g CdWO4 crystal was run in a 417-h live time measurement. Thanks to the scintillation light, the α background is easily discriminated, resulting in zero counts above the 2615-keV γ line of 208Tl. These results, combined with an extreme easy light detector operation, represent the first tangible proof demonstrating the feasibility of this kind of technique.

PACS numbers

29.40.Mc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Freedman and B. Kayser (Co-Chairs of the Organizing Committee), physics/0411216.Google Scholar
  2. 2.
    C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res. A 518, 775 (2004).CrossRefADSGoogle Scholar
  3. 3.
    S. Pirro et al., AIP Conf. Proc. 785, 177 (2005).ADSGoogle Scholar
  4. 4.
    C. Arnaboldi et al., Phys. Rev. Lett. 95, 142501 (2005); hep-ex/0501034.Google Scholar
  5. 5.
    L. Gonzalez-Mestre and D. Perret-Gallix, Nucl. Instrum. Methods Phys. Res. A 279, 382 (1989).CrossRefADSGoogle Scholar
  6. 6.
    A. Alessandrello et al., Nucl. Phys. B (Proc. Suppl.) 28A, 233 (1992).CrossRefADSGoogle Scholar
  7. 7.
    C. Bobin et al., Nucl. Instrum. Methods A 386, 453 (1997).CrossRefADSGoogle Scholar
  8. 8.
    G. Angloher et al., Astropart. Phys. 23, 325 (2005).CrossRefADSGoogle Scholar
  9. 9.
    S. Cebrian et al., Phys. Lett. B 563, 48 (2003).CrossRefADSGoogle Scholar
  10. 10.
    E. Previtali et al., Nucl. Instrum. Methods Phys. Res. A 518, 256 (2004).CrossRefADSGoogle Scholar
  11. 11.
    A. Alessandrello et al., IEEE Trans. Nucl. Sci. 44, 416 (1997).CrossRefGoogle Scholar
  12. 12.
    C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res. A 520, 578 (2004).CrossRefADSGoogle Scholar
  13. 13.
    S. B. Mikhrin et al., Nucl. Instrum. Methods Phys. Res. A 486, 295 (2002).CrossRefGoogle Scholar
  14. 14.
    A. Alessandrello et al., Nucl. Instrum. Methods Phys. Res. A 412, 454 (1998).CrossRefGoogle Scholar
  15. 15.
    F. A. Danevich et al., Phys. Rev. C 68, 035501 (2003).Google Scholar
  16. 16.
    F. A. Danevich et al., nucl-ex/0412021.Google Scholar
  17. 17.
    J. Åström et al., physics/0504151.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. Pirro
    • 1
  • J. W. Beeman
    • 2
  • S. Capelli
    • 1
  • M. Pavan
    • 1
  • E. Previtali
    • 1
  • P. Gorla
    • 3
  1. 1.Dipartimento di Fisica dell’Università di Milano-Bicocca and INFNSezione di MilanoItaly
  2. 2.Lawrence Berkeley National LaboratoryUSA
  3. 3.Laboratori Nazionali del Gran SassoItaly

Personalised recommendations