Advertisement

Physics of Atomic Nuclei

, Volume 69, Issue 12, pp 2083–2089 | Cite as

New CUORICINO results and status of CUORE

  • O. Cremoniesi
  • R. Ardito
  • C. Arnaboldi
  • D. R. Artusa
  • F. T. AvignoneIII
  • M. Balata
  • I. Bandac
  • M. Barucci
  • J. W. Beeman
  • F. Bellini
  • C. Brofferio
  • C. Bucci
  • S. Capelli
  • F. Capozzi
  • L. Carbone
  • S. Cebrian
  • M. Clemenza
  • C. Cosmelli
  • R. J. Creswick
  • I. Dafinei
  • A. de Waard
  • M. Dolinski
  • H. A. Farach
  • F. Ferroni
  • E. Fiorini
  • C. Gargiulo
  • E. Guardincerri
  • A. Giuliani
  • P. Gorla
  • T. D. Gutierrez
  • E. E. Haller
  • I. G. Irastorza
  • E. Longo
  • G. Maier
  • R. Maruyama
  • S. Morganti
  • S. Nisi
  • C. Nones
  • E. B. Norman
  • A. Nucciotti
  • E. Olivieri
  • P. Ottonello
  • M. Pallavicini
  • E. Palmieri
  • M. Pavan
  • M. Pedretti
  • G. Pessina
  • S. Pirro
  • E. Previtali
  • B. Quiter
  • L. Risegari
  • C. Rosenfeld
  • S. Sangiorgio
  • M. Sisti
  • A. R. Smith
  • L. Torres
  • G. Ventura
  • N. Xu
  • L. Zanotti
Proceedings of the 5th International Conference on NONACCELERATOR NEW PHYSICS Double-Beta Decay and Rare Processes

Abstract

CUORICINO is an array of 62 TeO2 bolometers with a total mass of 40.7 kg (11.2 kg of 130Te), operated at about 10 mK to search for ββ(0ν) of 130Te. The detectors are organized as a 14-story tower and intended as a slightly modified version of one of the 19 towers of the CUORE project, a proposed tightly packed array of 988 TeO2 bolometers (741 kg of total mass of TeO2) for ultralow-background searches on neutrinoless double-beta decay, cold dark matter, solar axions, and rare nuclear decays. Started in April 2003 at the Laboratori Nazionali del Gran Sasso (LNGS), CUORICINO data taking was stopped in November 2003 to repair the readout wiring system of the 62 bolometers. Restarted in spring 2004, CUORICINO is presently the most sensitive running experiment on neutrinoless double-beta decay. No evidence for ββ(0ν) decay has been found so far and a new lower limit, T 1 2/0ν ≥ 1.8 × 1024 yr (90% C.L.), is set, corresponding to 〈m ν〉 ≤ 0.2–1.1 eV, depending on the theoretical nuclear matrix elements used in the analysis. Detector performance, operational procedures, and background analysis results are reviewed. The expected performance and sensitivity of CUORE is also discussed.

PACS numbers

29.30.-h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Barger et al., Phys. Lett. B 595, 55 (2004).CrossRefADSGoogle Scholar
  2. 2.
    S. Hannestad et al., J. Cosmol. Astropart. Phys. 05, 004 (2003).CrossRefADSGoogle Scholar
  3. 3.
    M. Tegmark et al., Phys. Rev. D 69, 103501 (2004).Google Scholar
  4. 4.
    D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).CrossRefADSGoogle Scholar
  5. 5.
    P. Crotty et al., Phys. Rev. D 69, 123007 (2004).Google Scholar
  6. 6.
    S. W. Allen et al., Mon. Not. R. Astron. Soc. 346, 593 (2003).CrossRefADSGoogle Scholar
  7. 7.
    V. M. Lobashev, Nucl. Phys. A 719, 153 (2003), and references therein.CrossRefADSGoogle Scholar
  8. 8.
    C. Arnaboldi et al., MARE, Milano Int. Note (Spring 2005).Google Scholar
  9. 9.
    F. Feruglio et al., Nucl. Phys. B 637, 345 (2002).CrossRefADSGoogle Scholar
  10. 10.
    F. Feruglio et al., Nucl. Phys. B 659, 359 (2003).CrossRefADSGoogle Scholar
  11. 11.
    F. Joaquim, Phys. Rev. D 68, 033019 (2003).Google Scholar
  12. 12.
    C. Giunti, hep-ph/0308206.Google Scholar
  13. 13.
    S. Pascoli and S. T. Petkov, Phys. Lett. B 544, 239 (2002).CrossRefADSGoogle Scholar
  14. 14.
    S. Pascoli and S. T. Petkov, Phys. Lett. B 580, 280 (2004).CrossRefADSGoogle Scholar
  15. 15.
    J. Bahcall and C. Pena-Garay, J. High Eenergy Phys. 0311, 004 (2003).CrossRefADSGoogle Scholar
  16. 16.
    J. Bahcall et al., Phys. Rev. D 70, 033012 (2004).Google Scholar
  17. 17.
    H. Murayama and C. Pena-Garay, Phys. Rev. D 69, 031301 (2004).Google Scholar
  18. 18.
    J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).CrossRefADSGoogle Scholar
  19. 19.
    H. V. Klapdor-Kleingrothaus, A. Dietz, I. V. Krivosheina, and O. Chkvorets, Nucl. Instrum. Methods Phys. Res. A 522, 371 (2004).CrossRefADSGoogle Scholar
  20. 20.
    H. V. Klapdor-Kleingrothaus, A. Dietz, I. V. Krivosheina, et al., Phys. Lett. B 578, 54 (2004).CrossRefADSGoogle Scholar
  21. 21.
    S. R. Elliot and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52, 115 (2002); hep-ph/0202264.CrossRefADSGoogle Scholar
  22. 22.
    F. Feruglio, A. Strumia, and F. Vissani, Nucl. Phys. B 637, 345 (2002).CrossRefADSGoogle Scholar
  23. 23.
    A. Faessler et al., in Proceedings of the MEDEX’03 Conference, Prague, Czech Republic, 2003.Google Scholar
  24. 24.
    E. Fiorini and T. Niinikoski, Nucl. Instrum. Methods 224, 83 (1984).CrossRefGoogle Scholar
  25. 25.
    C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res. A 518, 774 (2004); hep-ex/0212053.ADSGoogle Scholar
  26. 26.
    C. Arnaboldi et al., Astropart. Phys. 20, 91 (2003); hep-ex/0302021.CrossRefADSGoogle Scholar
  27. 27.
    CUORE Collab., CUORE Proposal to the LNGS and INFN Scientific Committees, hep-ex/0501010; http://crio.mib.infn.it/wig/Cuorepage.
  28. 28.
    A. Staudt, T. T. S. Kuo, and H. V. Klapdor-Kleingrothaus, Phys. Rev. C 46, 871 (1992).CrossRefADSGoogle Scholar
  29. 29.
    G. Pantis, F. Simkovic, J. D. Vergados, and A. Faessler, Phys. Rev. C 53, 695 (1996).CrossRefADSGoogle Scholar
  30. 30.
    P. Vogel et al., Phys. Rev. Lett. 57, 3148 (1986); P. Vogel et al., Phys. Rev. C 37, 73 (1988); M. Moe and P. Vogel, Annu. Rev. Nucl. Part. Sci. 44, 247 (1994).CrossRefADSGoogle Scholar
  31. 31.
    O. Civitarese, A. Faessler, and T. Tomoda, Phys. Lett. B 194, 11 (1987); T. Tomoda and A. Faessler, Phys. Lett. B 199, 473 (1987); J. Suhonen and O. Civitarese, Phys. Rev. C 49, 3055 (1994).CrossRefADSGoogle Scholar
  32. 32.
    T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).CrossRefADSGoogle Scholar
  33. 33.
    C. Barbero et al., Nucl. Phys. A 650, 485 (1999).CrossRefADSGoogle Scholar
  34. 34.
    F. Simkovic, Phys. Rev. C 60, 055502 (1999).Google Scholar
  35. 35.
    J. Suhonen, O. Civitarese, and A. Faessler, Nucl. Phys. A 543, 645 (1992).CrossRefADSGoogle Scholar
  36. 36.
    K. Muto, E. Bender, and H. V. Klapdor, Z. Phys. A 334, 187 (1989).Google Scholar
  37. 37.
    S. Stoica and H. V. Klapdor, Phys. Rev. C 63, 064304 (2001).Google Scholar
  38. 38.
    A. Faessler and F. Simkovic, J. Phys. G 24, 2139 (1998).CrossRefADSGoogle Scholar
  39. 39.
    J. Engel et al., Phys. Lett. B 225, 5 (1989).CrossRefADSGoogle Scholar
  40. 40.
    M. Aunola and J. Suhonen, Nucl. Phys. A 643, 207 (1998).CrossRefADSGoogle Scholar
  41. 41.
    L. Foggetta et al., Appl. Phys. Lett. 86, 134106 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • O. Cremoniesi
    • 1
  • R. Ardito
    • 1
    • 2
  • C. Arnaboldi
    • 1
  • D. R. Artusa
    • 3
  • F. T. AvignoneIII
    • 3
  • M. Balata
    • 4
  • I. Bandac
    • 3
  • M. Barucci
    • 5
  • J. W. Beeman
    • 6
  • F. Bellini
    • 7
  • C. Brofferio
    • 1
  • C. Bucci
    • 4
  • S. Capelli
    • 1
  • F. Capozzi
    • 1
  • L. Carbone
    • 1
  • S. Cebrian
    • 8
  • M. Clemenza
    • 1
  • C. Cosmelli
    • 7
  • R. J. Creswick
    • 3
  • I. Dafinei
    • 7
  • A. de Waard
    • 9
  • M. Dolinski
    • 6
    • 10
  • H. A. Farach
    • 3
  • F. Ferroni
    • 7
  • E. Fiorini
    • 1
  • C. Gargiulo
    • 7
  • E. Guardincerri
    • 11
  • A. Giuliani
    • 12
  • P. Gorla
    • 1
    • 8
  • T. D. Gutierrez
    • 6
  • E. E. Haller
    • 6
    • 10
  • I. G. Irastorza
    • 8
  • E. Longo
    • 7
  • G. Maier
    • 2
  • R. Maruyama
    • 6
    • 10
  • S. Morganti
    • 7
  • S. Nisi
    • 4
  • C. Nones
    • 1
  • E. B. Norman
    • 13
  • A. Nucciotti
    • 1
  • E. Olivieri
    • 5
  • P. Ottonello
    • 11
  • M. Pallavicini
    • 11
  • E. Palmieri
    • 14
  • M. Pavan
    • 1
  • M. Pedretti
    • 12
  • G. Pessina
    • 1
  • S. Pirro
    • 1
  • E. Previtali
    • 1
  • B. Quiter
    • 6
    • 10
  • L. Risegari
    • 5
  • C. Rosenfeld
    • 3
  • S. Sangiorgio
    • 12
  • M. Sisti
    • 1
  • A. R. Smith
    • 6
  • L. Torres
    • 1
  • G. Ventura
    • 5
  • N. Xu
    • 13
  • L. Zanotti
    • 1
  1. 1.Dipartimento di Fisica dell’Università di Milano-Bicocca e Sezione di Milano dell’INFNMilanoItaly
  2. 2.Dipartimento di Ingegneria Strutturale del Politecnico di MilanoMilanoItaly
  3. 3.Department of Physics and AstronomyUniversity of South CarolinaColumbiaUSA
  4. 4.Laboratori Nazionali del Gran SassoAssergi (L’Aquila)Italy
  5. 5.Dipartimento di Fisica dell’Università di Firenze e Sezione di Firenze dell’INFNFirenzeItaly
  6. 6.Lawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.Dipartimento di Fisica dell’Università di Roma e Sezione di Roma 1 dell’INFNRomaItaly
  8. 8.Laboratorio de Fisica Nuclear y Alta EnergiasUniversitad de ZaragozaZaragozaSpain
  9. 9.Kamerling Onnes LaboratoryLeiden UniversityLeidenthe Netherlands
  10. 10.University of CaliforniaBerkeleyUSA
  11. 11.Dipartimento di Fisica dell’Università di Genova e Sezione di Genova dell’INFNGenovaItaly
  12. 12.Dipartimento di Fisica e Maternatica dell’Università dell’Insubria e Sezione di Milano dell’INFNComoItaly
  13. 13.Lawrence Livermore National LaboratoryLivermoreUSA
  14. 14.Laboratori Nazionali di LegnaroPadovaItaly

Personalised recommendations