Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

New CUORICINO results and status of CUORE

Abstract

CUORICINO is an array of 62 TeO2 bolometers with a total mass of 40.7 kg (11.2 kg of 130Te), operated at about 10 mK to search for ββ(0ν) of 130Te. The detectors are organized as a 14-story tower and intended as a slightly modified version of one of the 19 towers of the CUORE project, a proposed tightly packed array of 988 TeO2 bolometers (741 kg of total mass of TeO2) for ultralow-background searches on neutrinoless double-beta decay, cold dark matter, solar axions, and rare nuclear decays. Started in April 2003 at the Laboratori Nazionali del Gran Sasso (LNGS), CUORICINO data taking was stopped in November 2003 to repair the readout wiring system of the 62 bolometers. Restarted in spring 2004, CUORICINO is presently the most sensitive running experiment on neutrinoless double-beta decay. No evidence for ββ(0ν) decay has been found so far and a new lower limit, T 1 2/0ν ≥ 1.8 × 1024 yr (90% C.L.), is set, corresponding to 〈m ν〉 ≤ 0.2–1.1 eV, depending on the theoretical nuclear matrix elements used in the analysis. Detector performance, operational procedures, and background analysis results are reviewed. The expected performance and sensitivity of CUORE is also discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. Barger et al., Phys. Lett. B 595, 55 (2004).

  2. 2.

    S. Hannestad et al., J. Cosmol. Astropart. Phys. 05, 004 (2003).

  3. 3.

    M. Tegmark et al., Phys. Rev. D 69, 103501 (2004).

  4. 4.

    D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).

  5. 5.

    P. Crotty et al., Phys. Rev. D 69, 123007 (2004).

  6. 6.

    S. W. Allen et al., Mon. Not. R. Astron. Soc. 346, 593 (2003).

  7. 7.

    V. M. Lobashev, Nucl. Phys. A 719, 153 (2003), and references therein.

  8. 8.

    C. Arnaboldi et al., MARE, Milano Int. Note (Spring 2005).

  9. 9.

    F. Feruglio et al., Nucl. Phys. B 637, 345 (2002).

  10. 10.

    F. Feruglio et al., Nucl. Phys. B 659, 359 (2003).

  11. 11.

    F. Joaquim, Phys. Rev. D 68, 033019 (2003).

  12. 12.

    C. Giunti, hep-ph/0308206.

  13. 13.

    S. Pascoli and S. T. Petkov, Phys. Lett. B 544, 239 (2002).

  14. 14.

    S. Pascoli and S. T. Petkov, Phys. Lett. B 580, 280 (2004).

  15. 15.

    J. Bahcall and C. Pena-Garay, J. High Eenergy Phys. 0311, 004 (2003).

  16. 16.

    J. Bahcall et al., Phys. Rev. D 70, 033012 (2004).

  17. 17.

    H. Murayama and C. Pena-Garay, Phys. Rev. D 69, 031301 (2004).

  18. 18.

    J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).

  19. 19.

    H. V. Klapdor-Kleingrothaus, A. Dietz, I. V. Krivosheina, and O. Chkvorets, Nucl. Instrum. Methods Phys. Res. A 522, 371 (2004).

  20. 20.

    H. V. Klapdor-Kleingrothaus, A. Dietz, I. V. Krivosheina, et al., Phys. Lett. B 578, 54 (2004).

  21. 21.

    S. R. Elliot and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52, 115 (2002); hep-ph/0202264.

  22. 22.

    F. Feruglio, A. Strumia, and F. Vissani, Nucl. Phys. B 637, 345 (2002).

  23. 23.

    A. Faessler et al., in Proceedings of the MEDEX’03 Conference, Prague, Czech Republic, 2003.

  24. 24.

    E. Fiorini and T. Niinikoski, Nucl. Instrum. Methods 224, 83 (1984).

  25. 25.

    C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res. A 518, 774 (2004); hep-ex/0212053.

  26. 26.

    C. Arnaboldi et al., Astropart. Phys. 20, 91 (2003); hep-ex/0302021.

  27. 27.

    CUORE Collab., CUORE Proposal to the LNGS and INFN Scientific Committees, hep-ex/0501010; http://crio.mib.infn.it/wig/Cuorepage.

  28. 28.

    A. Staudt, T. T. S. Kuo, and H. V. Klapdor-Kleingrothaus, Phys. Rev. C 46, 871 (1992).

  29. 29.

    G. Pantis, F. Simkovic, J. D. Vergados, and A. Faessler, Phys. Rev. C 53, 695 (1996).

  30. 30.

    P. Vogel et al., Phys. Rev. Lett. 57, 3148 (1986); P. Vogel et al., Phys. Rev. C 37, 73 (1988); M. Moe and P. Vogel, Annu. Rev. Nucl. Part. Sci. 44, 247 (1994).

  31. 31.

    O. Civitarese, A. Faessler, and T. Tomoda, Phys. Lett. B 194, 11 (1987); T. Tomoda and A. Faessler, Phys. Lett. B 199, 473 (1987); J. Suhonen and O. Civitarese, Phys. Rev. C 49, 3055 (1994).

  32. 32.

    T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).

  33. 33.

    C. Barbero et al., Nucl. Phys. A 650, 485 (1999).

  34. 34.

    F. Simkovic, Phys. Rev. C 60, 055502 (1999).

  35. 35.

    J. Suhonen, O. Civitarese, and A. Faessler, Nucl. Phys. A 543, 645 (1992).

  36. 36.

    K. Muto, E. Bender, and H. V. Klapdor, Z. Phys. A 334, 187 (1989).

  37. 37.

    S. Stoica and H. V. Klapdor, Phys. Rev. C 63, 064304 (2001).

  38. 38.

    A. Faessler and F. Simkovic, J. Phys. G 24, 2139 (1998).

  39. 39.

    J. Engel et al., Phys. Lett. B 225, 5 (1989).

  40. 40.

    M. Aunola and J. Suhonen, Nucl. Phys. A 643, 207 (1998).

  41. 41.

    L. Foggetta et al., Appl. Phys. Lett. 86, 134106 (2005).

Download references

Author information

Additional information

CUORE Collaboration

The text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cremoniesi, O., Ardito, R., Arnaboldi, C. et al. New CUORICINO results and status of CUORE. Phys. Atom. Nuclei 69, 2083–2089 (2006). https://doi.org/10.1134/S1063778806120118

Download citation

PACS numbers

  • 29.30.-h