Advertisement

Physics of Atomic Nuclei

, Volume 69, Issue 11, pp 1847–1856 | Cite as

The Sun is a plasma diffuser that sorts atoms by mass

  • O. Manuel
  • S. A. Kamat
  • M. Mozina
Neutrino Physics and Astrophysics Elementary Particles and Fields. Theory

Abstract

The Sun is a plasma diffuser that selectively moves light elements like H and He and the lighter isotopes of each element to its surface. The Sun formed on the collapsed core of a supernova (SN) and is composed mostly of elements made near the SN core (Fe, O, Ni, Si, and S), like the rocky planets and ordinary meteorites. Neutron emission from the central neutron star triggers a series of reactions that generate solar luminosity, solar neutrinos, solar mass fractionation, and an outpouring of hydrogen in the solar wind. Mass fractionation seems to have operated in the parent star and likely occurs in other stars as well.

PACS numbers

96.20.Dt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. W. Aston, Br. Assoc. Adv. Sci., Rep. 82, 403 (1913).Google Scholar
  2. 2.
    F. W. Aston, Proc. R. Soc. London, Ser. A 115, 487 (1927).ADSGoogle Scholar
  3. 3.
    Lunar Sample Preliminary Examination Team, Science 165, 1211 (1969).CrossRefADSGoogle Scholar
  4. 4.
    J. H. Reynolds, Phys. Rev. Lett. 4, 8 (1960).CrossRefADSGoogle Scholar
  5. 5.
    M. W. Rowe and P. K. Kuroda, J. Geophys. Res. 70, 709 (1965).ADSCrossRefGoogle Scholar
  6. 6.
    O. K. Manuel, E. W. Hennecke, and D. D. Sabu, Nature 240, 89 (1972).ADSGoogle Scholar
  7. 7.
    O. K. Manuel and D. D. Sabu, Science 187, 208 (1977).CrossRefADSGoogle Scholar
  8. 8.
    R. V. Ballad et al., Nature 277, 615 (1979).CrossRefADSGoogle Scholar
  9. 9.
    F. Begemann, Rep. Prog. Phys. 43, 1309 (1980).CrossRefADSGoogle Scholar
  10. 10.
    O. Manuel and G. Hwaung, Meteoritics 18, 209 (1983).ADSGoogle Scholar
  11. 11.
    O. Manuel and S. Friberg, in Proceedings of 2002 SOHO 12 /GONG + 2002 Conference, Ed. by Huguette Lacoste, ESA SP-517 SOHO/GONG (Noordwijk, The Netherlands, 2003), p. 345.Google Scholar
  12. 12.
    O. Manuel, C. Bolon, and Max Zhong, J. Radioanal. Nucl. Chem. 252, 3 (2002).CrossRefGoogle Scholar
  13. 13.
    O. K. Manuel, B. W. Ninham, and S. E. Friberg, J. Fusion Energy 21, 193 (2003).CrossRefGoogle Scholar
  14. 14.
  15. 15.
    E. Anders and N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989).CrossRefADSGoogle Scholar
  16. 16.
    D.-C. Lee and A. N. Halliday, Nature 378, 771 (1995).CrossRefADSGoogle Scholar
  17. 17.
    W. R. Kelly and G. J. Wasserburg, Geophys. Res. Lett. 5, 1079 (1978).ADSGoogle Scholar
  18. 18.
    J. L. Birck and C. J. Allègre, Geophys. Res. Lett. 12, 745 (1985).ADSGoogle Scholar
  19. 19.
    A. Shukolyukov and G. W. Lugmair, Science 259, 1138 (1993).CrossRefADSGoogle Scholar
  20. 20.
    C. M. Gray and W. Compston, Nature 251, 495 (1974).CrossRefADSGoogle Scholar
  21. 21.
    G. Srinivasan, A. A. Ulyanov, and J. N. Goswami, Astrophys. J. 431, L67 (1994).CrossRefADSGoogle Scholar
  22. 22.
    E. Burbidge et al. (B2FH), Rev. Mod. Phys. 29, 547 (1957).CrossRefADSGoogle Scholar
  23. 23.
    M. S. Boulos and O. K. Manuel, Science 174, 1334 (1971).CrossRefADSGoogle Scholar
  24. 24.
    W. A. Fowler, J. L. Greenstein, and F. Hoyle, Am. J. Phys. 29, 393 (1961).CrossRefADSGoogle Scholar
  25. 25.
    P. K. Kuroda and W. A. Myers, Radiochim. Acta 64, 167 (1994).Google Scholar
  26. 26.
    P. K. Kuroda and W. A. Myers, J. Radioanal. Nucl. Chem. 211, 539 (1996).CrossRefGoogle Scholar
  27. 27.
    D. D. Sabu and O. K. Manuel, Meteoritics 15, 117 (1980).ADSGoogle Scholar
  28. 28.
    O. Manuel, Yad. Fiz. 67, 1983 (2004) [Phys. At. Nucl. 67, 1959 (2004)].Google Scholar
  29. 29.
    R. S. Lewis, B. Srinivasan, and E. Anders, Science 190, 1251 (1975).CrossRefADSGoogle Scholar
  30. 30.
    B. Srinivasan and E. Anders, Science 201, 51 (1978).CrossRefADSGoogle Scholar
  31. 31.
    F. Begemann, in Origins and Evolution of the Elements, Ed. by N. Prantoz, E. Vangioni-Flam, and M. Casse (Cambridge Press, Cambridge, 1993), p. 518.Google Scholar
  32. 32.
    O. K. Manuel, Geokhimiya 12, 1776 (1981).Google Scholar
  33. 33.
    G. R. Huss and R. S. Lewis, Geochim. Cosmochim. Acta 59, 115 (1995).CrossRefADSGoogle Scholar
  34. 34.
    U. Ott, Astrophys. J. 463, 344 (1996).CrossRefADSGoogle Scholar
  35. 35.
    J. D. Gilmour, A. B. Verchovsky, A. V. Fisenko, et al., Geochim. Cosmochim. Acta 69, 4133 (2005).CrossRefADSGoogle Scholar
  36. 36.
    S. Richter, U. Ott, and F. Begemann, Nature 391, 261 (1998).CrossRefADSGoogle Scholar
  37. 37.
    R. Mass, R. D. Loss, K. J. R. Rosman, et al., in Origin of Elements in the Solar System: Implications of Post-1957 Observations, Ed. by O. Manuel (Kluwer, New York, 2000), p. 361.Google Scholar
  38. 38.
    K. Windler, in Origin of Elements in the Solar System: Implications of Post-1957 Observations, Ed. by O. Manuel (Kluwer, New York, 2000), p. 519; http://web.umr.edu/:_om/abstracts2001/windleranalysis.pdf.Google Scholar
  39. 39.
    D. D. Sabu and O. K. Manuel, in Proceedings of the 11th Lunar Planetary Science Conference, 1980, p. 879.Google Scholar
  40. 40.
    U. Ott and F. Begemann, Astrophys. J. 353, L57 (1990).CrossRefADSGoogle Scholar
  41. 41.
    U. Ott, F. Begemann, J. Yang, and S. Epstein, Nature 332, 700 (1988).CrossRefADSGoogle Scholar
  42. 42.
    A. D. Brandon, M. Humayun, I. S. Puchtel, et al., Nature 309, 1233 (2005).Google Scholar
  43. 43.
    R. N. Clayton, L. Grossman, and T. K. Mayeda, Science 182, 485 (1973).CrossRefADSGoogle Scholar
  44. 44.
    R. N. Clayton, N. Onuma, and T. K. Mayeda, Earth Planet. Sci. Lett. 30, 10 (1976).CrossRefADSGoogle Scholar
  45. 45.
    S. Messenger, L. P. Keller, and S. S. Lauretta, Science (2005).Google Scholar
  46. 46.
    E. Zinner, L. R. Nittler, P. Hoppe, et al., Geochim. Cosmochim. Acta 69, 4149 (2005).CrossRefADSGoogle Scholar
  47. 47.
    R. G. Downing and O. K. Manuel, Geochem. J. 16, 157 (1982).Google Scholar
  48. 48.
    Qi-Lu and A. Masuda, in Origin of Elements in the Solar System: Implications of Post-1957 Observations, Ed. by O. Manuel (Kluwer, New York, 2000), p. 385.Google Scholar
  49. 49.
    Q. Yin, S. B. Jacobsen, and K. Yamashita, Nature 415, 881 (2002).CrossRefADSGoogle Scholar
  50. 50.
    J. H. Chen, D. A. Papanastassiou, G. J. Wasserburg, and H. H. Ngo, Lunar Planet. Sci. XXXV, Abstract No. 1431 (2004).Google Scholar
  51. 51.
    G. Hwaung and O. K. Manuel, Nature 299, 807 (1982).CrossRefADSGoogle Scholar
  52. 52.
    J. T. Lee, B. Li, and O. K. Manuel, Geochem. J. 30, 17 (1996).Google Scholar
  53. 53.
    D. D. Sabu and O. K. Manuel, Nature 262, 28 (1976).CrossRefADSGoogle Scholar
  54. 54.
    J. H. Reynolds, Phys. Rev. Lett. 4, 351 (1960).CrossRefADSGoogle Scholar
  55. 55.
    H. Hintenberger, E. Vilcsek, and H. Wänke, Z. Naturforsch. 20A, 939 (1965).ADSGoogle Scholar
  56. 56.
    O. K. Manuel, Geochim. Cosmochim. Acta 31, 2413 (1967).CrossRefADSGoogle Scholar
  57. 57.
    K. Marti, Science 166, 1263 (1969).CrossRefADSGoogle Scholar
  58. 58.
    P. K. Kuroda and O. K. Manuel, Nature 227, 1113 (1970).CrossRefADSGoogle Scholar
  59. 59.
    C. M. Hohenberg, P. K. Davis, W. A. Kaiser, R. S. Lewis and J. H. Reynolds, in Proceedings of the 11th Apollo Lunar Science Conference, 1970, p. 1283.Google Scholar
  60. 60.
    B. Srinivasan and O. K. Manuel, Earth Planet. Sci. Lett. 12, 282 (1971).CrossRefADSGoogle Scholar
  61. 61.
    E. W. Hennecke and O. K. Manuel, Z. Naturforsch. A 26, 1980 (1971).ADSGoogle Scholar
  62. 62.
    B. Srinivasan, E. W. Hennecke, D. E. Sinclair, and O. K. Manuel, in Proceedings of the Third Lunar Science Conference, 1972, Vol. 2, p. 1927.Google Scholar
  63. 63.
    B. Srinivasan, in Proceedings of the 4th Lunar Science Conference, 1973, p. 2049.Google Scholar
  64. 64.
    R. O. Pepin, Earth Planet. Sci. Lett. 2, 13 (1967).CrossRefADSGoogle Scholar
  65. 65.
    D. C. Black and R. O. Pepin, Earth Planet. Sci. Lett. 6, 395 (1969).CrossRefADSGoogle Scholar
  66. 66.
    E. Anders, D. Heymann, and E. Mazor, Geochim. Cosmochim. Acta 34, 127 (1970).CrossRefADSGoogle Scholar
  67. 67.
    D. C. Black, Geochim. Cosmochim. Acta 36, 377 (1972).CrossRefADSGoogle Scholar
  68. 68.
    D. D. Clayton, Nature 257, 36 (1975).CrossRefADSGoogle Scholar
  69. 69.
    P. Eberhardt, in Proceedings of the 9th Lunar Planetary Science Conference, 1978, p. 1027.Google Scholar
  70. 70.
    P. Eberhardt, M. H. A. Jungck, F. O. Meier, and F. Neiderer, in Lunar Planet. Sci. X, Houston, Lunar and Planetary Institute, 1979, p. 341.Google Scholar
  71. 71.
    P. Eberhardt, M. H. A. Jungck, F. O. Meier, and F. Neiderer, Astrophys. J. 234, L169 (1979).CrossRefADSGoogle Scholar
  72. 72.
    M. H. A. Jungck and P. Eberhardt, Meteoritics 14, 439 (1979).ADSGoogle Scholar
  73. 73.
    F. O. Meier, M. H. A. Jungck, and P. Eberhardt, in Lunar Planet. Sci. XI, Houston, Lunar and Planetary Institute, 1980, p. 723.Google Scholar
  74. 74.
    L. Alerts, R. S. Lewis, J. Matsuda, and E. Anders, Geochim. Cosmochim. Acta 44, 189 (1980).CrossRefADSGoogle Scholar
  75. 75.
    D. D. Sabu and O. K. Manuel, in Proceedings of the 11th Lunar Planetary Science Conference, 1980, p. 879.Google Scholar
  76. 76.
    R. N. Clayton and T. K. Mayeda, Geophys. Res. Lett. 4, 295 (1977).ADSGoogle Scholar
  77. 77.
    G. J. Wasserburg, T. Lee, and D. A. Papanastassiou, Geophys. Res. Lett. 4, 299 (1977).ADSGoogle Scholar
  78. 78.
    W. A. Fowler, Rev. Mod. Phys. 56, 149 (1984).CrossRefADSGoogle Scholar
  79. 79.
    A. G. W. Cameron, Icarus 60, 416 (1984).CrossRefADSGoogle Scholar
  80. 80.
    G. J. Wasserburg, Earth Planet. Sci. Lett. 86, 129 (1987).CrossRefADSGoogle Scholar
  81. 81.
    R. L. Maclin, J. H. Gibbons, and T. Inada, Nature 197, 369 (1963).CrossRefADSGoogle Scholar
  82. 82.
    C. E. Rolis and W. S. Rodney, in Cauldrons in the Cosmos, Ed. by D. N. Schramm (Univ. of Chicago Press, Chicago 1998), p. 462.Google Scholar
  83. 83.
    O. Manuel, W. A. Myers, Y. Singh, and M. Pleess, J. Fusion Energy 23, 55 (2005).CrossRefGoogle Scholar
  84. 84.
    W. D. Harkins, J. Am. Chem. Soc. 39, 856 (1917).CrossRefGoogle Scholar
  85. 85.
    J. K. Tuli, Nuclear Wallet Cards (National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York, 2000), p. 96.Google Scholar
  86. 86.
    F. Hoyle, Home Is Where the Wind Blows (University Science Books, Mill Valley, CA, 1994), p. 153.Google Scholar
  87. 87.
    E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).CrossRefADSGoogle Scholar
  88. 88.
    O. Manuel, E. Miller, and A. Katragada, J. Fusion Energy 20, 197 (2002).CrossRefGoogle Scholar
  89. 89.
    H. Heiselberg, Talk given at the Conference on Compact Stars in the QCD Phase Diagram, Copenhagen, Denmark, 2001, astroph/0201465; http://arxiv.org/PS_cache/astroph/pdf/0201/0201465.pdf.
  90. 90.
    K. Birkeland, in Norwegian Aurora Polaris Expedition, 1902–1903, (1908), p. 661; http://www.catastrophism.com/texts/birkeland/
  91. 91.
    T. W. Richards, in Nobel Lectures, Chemistry, 1914 (Elsevier, Amsterdam, 1966), p. 282.Google Scholar
  92. 92.
    W. A. Fowler, in Cauldrons in the Cosmos: Nuclear Astrophysics by C. E. Rolfs and W. S. Rodney, Ed. by D. N. Schramm (Univ. Chicago Press, Chicago, 1988), p. xi.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • O. Manuel
    • 1
  • S. A. Kamat
    • 1
  • M. Mozina
    • 1
    • 2
  1. 1.University of MissouriRollaUSA
  2. 2.Emerging TechnologiesMt. ShastaUSA

Personalised recommendations