Skip to main content
Log in

Excitation of Terahertz Magnons in Antiferromagnetic Nanostructures: Theory and Experiment

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The theoretical and experimental studies of the excitation, detection, and propagation of magnons in antiferromagnetic nanostructures have been reviewed. The properties of antiferromagnetic materials such as the absence of a macroscopic magnetization, the presence of strong exchange interactions, and a complex magnetocrystalline structure make it possible to implement new types of memory and functional electronic devices. The study of possible magnon effects in antiferromagnetic materials in micro- and nanoscales requires new experimental and theoretical approaches. In this review, the recent results on the excitation of magnetic oscillations—magnons—in antiferromagnetic materials induced by the current and optical radiation are described and systematized. The main theoretical results on antiferromagnets and multilayer antiferromagnetic heterostructures are presented. Models for description of phenomena induced by the current and optical pulses in nanoheterostructures including antiferromagnets are considered. Methods for studying antiferromagnetic micro- and nanostructures by means of Brillouin scattering, as well as prospects of the application of antiferromagnetic spintronics and magnonics, are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. Baltz, A. Manchon, M. Tsoi, et al., Rev. Mod. Phys. 90, 015005 (2018).

    ADS  Google Scholar 

  2. T. Jungwirth, X. Marti, P. Wadley, et al., Nat. Nano 11, 231 (2016).

    Google Scholar 

  3. M. Jungfleisch, W. Zhang, and A. Hoffmann, Phys. Lett. A 382, 865 (2018).

    ADS  Google Scholar 

  4. S. M. Rezende, A. Azevedo, and R. L. Rodriguez-Suarez, J. Appl. Phys. 126, 151101 (2019).

    ADS  Google Scholar 

  5. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevsky, Yu. A. Filimonov, Yu. V. Khivintsev, S. L. Vysotsky, V. K. Sakharov, and E. S. Pavlov, Phys. Usp. 58, 1002 (2015).

    ADS  Google Scholar 

  6. S. A. Nikitov, A. R. Safin, D. V. Kalyabin, et al., Phys. Usp. (2020, in press). https://doi.org/10.3367/UFNr.2019.07.038609

  7. J.Walowski and M. Münzenberg, J. Appl. Phys. 120, 140901 (2016).

    ADS  Google Scholar 

  8. F. Hellman, A. Hoffman, Ya. Tserkovnyak, et al., Rev. Mod. Phys. 89, 025006 (2017).

    ADS  Google Scholar 

  9. P. Némec, M. Fiebig, T. Kampfrath, et al., Nat. Phys. 14, 229 (2018).

    Google Scholar 

  10. L. Šmejkal, Yu. Mokrousov, B. Yan, et al., Nat. Phys. 14, 242 (2018).

    Google Scholar 

  11. O. Gomonay, V. Baltz, A. Brataas, et al., Nat. Phys. 14, 213 (2018).

    Google Scholar 

  12. J. Železný, P. Wadley, K. Olejník, et al., Nat. Phys. 14, 220 (2018).

    Google Scholar 

  13. A. Manchon, J. Železný, I. Miron, et al., Rev. Mod. Phys. 91, 035004 (2019).

    ADS  Google Scholar 

  14. E. V. Gomonay and V. M. Loktev, J. Low Temp. Phys. 40, 17 (2014).

    Google Scholar 

  15. B. A. Ivanov, J. Low Temp. Phys. 40, 91 (2014).

    Google Scholar 

  16. R. Troncoso, C. Ulloa, F. Pesce, et al., Phys. Rev. B 92, 224424 (2015).

    ADS  Google Scholar 

  17. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, et al., Symmetry and Physical Properties of Antiferromagnets (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  18. E. G. Galkina and B. A. Ivanov, J. Low Temp. Phys. 44, 618 (2018).

    Google Scholar 

  19. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization. Dynamic and Topological Solitons (Naukova Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  20. L. Néel, Ann. Phys. (Paris) 17, 61 (1932).

    Google Scholar 

  21. L. Néel, Ann. Phys. (Paris) 5, 232 (1936).

    ADS  Google Scholar 

  22. L. D. Landau, Phys. Zs. Sowjetunion 4, 675 (1933).

    Google Scholar 

  23. S. H. Liu, Phys. Rev. 142, 267 (1966).

    ADS  MathSciNet  Google Scholar 

  24. T. Oguchi, Phys. Rev. 117, 117 (1960).

    ADS  Google Scholar 

  25. R. Kubo, Phys. Rev. 87, 568 (1952).

    ADS  Google Scholar 

  26. P. W. Anderson, Phys. Rev. 86, 694 (1952).

    ADS  Google Scholar 

  27. W. Marshal, Proc. R. Soc. London, Sect. A 232, 69 (1955).

  28. I. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957).

    Google Scholar 

  29. T. Moriya, Phys. Rev. 120, 91 (1960).

    ADS  Google Scholar 

  30. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Fizmatlit, Moscow, 1994) [in Russian].

    Google Scholar 

  31. A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  32. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).

    MATH  Google Scholar 

  33. B. A. Ivanov, J. Low Temp. Phys. 31, 635 (2005).

    Google Scholar 

  34. A. F. Andreev and V. I. Marchenko, Phys. Usp. 23, 21 (1980).

    ADS  Google Scholar 

  35. I. V. Bar’yakhtar and B. A. Ivanov, Sov. J. Low Temp. Phys. 5, 361 (1979).

    Google Scholar 

  36. I. Baryakhtar and B. Ivanov, Solid State Commun. 34, 545 (1980).

    ADS  Google Scholar 

  37. V. I. Butrim and B. A. Ivanov, J. Low Temp. Phys. 38, 1112 (2012).

    Google Scholar 

  38. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin Waves (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  39. G. G. Levchenko, A. S. Savchenko, A. S. Tarasenko, et al., Low Temp. Phys. 40, 49 (2014).

    ADS  Google Scholar 

  40. V. V. Tarasenko and V. D. Kharitonov, Sov. Phys. JETP 33, 1246 (1970).

    ADS  Google Scholar 

  41. B. Lüthi, D. L. Mills, and R. E. Camley, Phys. Rev. B 28, 1475 (1983).

    ADS  Google Scholar 

  42. R. E. Camley and D. L. Mills, Phys. Rev. B 26, 1280 (1982).

    ADS  Google Scholar 

  43. Y. K. Fetisov, Sov. Phys. State 25, 2830 (1983).

    Google Scholar 

  44. B. Lüthi and R. Hock, J. Magn. Magn. Mater. 38, 264 (1983).

    ADS  Google Scholar 

  45. R. L. Stamps and R. E. Camley, J. Appl. Phys. 56, 3497 (1984).

    ADS  Google Scholar 

  46. R. L. Stamps and R. E. Camley, J. Magn. Magn. Mater. 5457, 803 (1986).

  47. A. Yu. Sharaevskaya, E. N. Beginin, D. V. Kalyabin, et al., J. Commun. Technol. Electron. 63, 1439 (2018).

    Google Scholar 

  48. A. Yu. Sharaevskaya, D. V. Kalyabin, E. N. Beginin, et al., J. Magn. Magn. Mater. 475, 778 (2019).

    ADS  Google Scholar 

  49. S. Vukovich, S. N. Gavrilin, and S. A. Nikitov, Sov. Phys. JETP 71, 964 (1990).

    Google Scholar 

  50. R. E. Camley, T. S. Rahman, and D. L. Mills, Phys. Rev. B 27, 261 (1983).

    ADS  Google Scholar 

  51. V. Veerakumar and R. E. Camley, Phys. Rev. B 81, 174432 (2010).

    ADS  Google Scholar 

  52. A. Kirilyuk, A. Kimel, and Th. Rasing, Rev. Mod. Phys. 82, 2731 (2010).

    ADS  Google Scholar 

  53. A. V. Kimel, A. Kirilyuk, P. Usachev, et al., Nature (London, U.K.) 435, 655 (2005).

    ADS  Google Scholar 

  54. T. Satoh, S.-J. Cho, R. Lida, et al., Phys. Rev. Lett. 105, 077402 (2010).

    ADS  Google Scholar 

  55. A. M. Kalashnikova, A. V. Kimel, R. V. Pisarev, et al., Phys. Rev. Lett. 99, 167205 (2007).

    ADS  Google Scholar 

  56. A. M. Kalashnikova, A. V. Kimel, R. V. Pisarev, et al., Phys. Rev. B 78, 104301 (2008).

    ADS  Google Scholar 

  57. C. Tzschaschel, K. Otani, R. Lida, et al., Phys. Rev. B 95, 174407 (2017).

    ADS  Google Scholar 

  58. T. Kampfrath et al., Nat. Photon. 5, 31 (2011).

    ADS  Google Scholar 

  59. A. V. Kimel, A. Kirilyuk, A. Tsvetkov, et al., Nature (London, U.K.) 429, 850 (2004).

    ADS  Google Scholar 

  60. P. Stremoukhov, A. Safin, M. Logunov, et al., J. Appl. Phys. 125, 223903 (2019).

    ADS  Google Scholar 

  61. A. V. Kimel, B. A. Ivanov, R. V. Pisarev, et al., Nat. Phys. 5, 727 (2009).

    Google Scholar 

  62. C. D. Stanciu, F. Hansteen, A. V. Kimel, et al., Phys. Rev. Lett. 99, 047601 (2007).

    ADS  Google Scholar 

  63. E. V. Gomonay and V. M. Loktev, J. Low Temp. Phys. 41, 698 (2015).

    Google Scholar 

  64. Yu. V. Gulyaev, P. E. Zilberman, and E. M. Epshtein, J. Exp. Theor. Phys. 114, 296 (2012).

    ADS  Google Scholar 

  65. Yu. V. Gulyaev, E. A. Vilkov, P. E. Zil’berman, G. M. Mikhailov, S. G. Chigarev, and E. M. Epshtein, JETP Lett. 98, 96 (2013).

    ADS  Google Scholar 

  66. T. Kosub, M. Kopte, R. Hühne, et al., Nat. Commun. 8, 13985 (2017).

    ADS  Google Scholar 

  67. K. Olejník, V. Schuler, X. Marti, et al., Nat. Commun. 8, 15434 (2017).

    ADS  Google Scholar 

  68. C. Hahn, G. de Loubens, V. Naletov, et al., Eur. Phys. Lett. 108, 57005 (2014).

    ADS  Google Scholar 

  69. Y.-M. Hung, C. Hahn, H. Chang, et al., AIP Adv. 7, 055903 (2017).

    ADS  Google Scholar 

  70. S. M. Rezende, R. L. Rodríguez-Suárez, and A. Azevedo, Phys. Rev. B 93, 054412 (2016).

    ADS  Google Scholar 

  71. R. Khymyn, I. Lisenkov, V. Tiberkevich, et al., Phys. Rev. B 93, 224421 (2016).

    ADS  Google Scholar 

  72. R. Cheng, Di Xiao, and A. Brataas, Phys. Rev. Lett. 116, 207603 (2016).

    ADS  Google Scholar 

  73. R. Khymyn, I. Lisenkov, V. Tiberkevich, et al., Sci. Rep. 7, 43705 (2017).

    ADS  Google Scholar 

  74. V. Puliafito, R. Khymyn, M. Carpentieri, et al., Phys. Rev. B 99, 024405 (2019).

    ADS  Google Scholar 

  75. O. R. Sulymenko, O. V. Prokopenko, V. S. Tiberkevich, et al., Phys. Rev. Appl. 8, 064007 (2017).

    ADS  Google Scholar 

  76. O. Sulymenko, O. Prokopenko, I. Lisenkov, et al., J. Appl. Phys. 124, 152115 (2018).

    ADS  Google Scholar 

  77. R. Khymyn, I. Lisenkov, J. Voorheis, et al., Sci. Rep. 8, 15727 (2018).

    ADS  Google Scholar 

  78. R. Khymyn, V. Tiberkevich, and A. Slavin, AIP Adv. 7, 055931 (2017).

    ADS  Google Scholar 

  79. O. Gomonay, T. Jungwirth, and J. Sinova, Phys. Rev. B 98, 104430 (2018).

    ADS  Google Scholar 

  80. R. Lebrun, A. Ross, S. A. Bender, et al., Nature (London, U.K.) 561, 222 (2018).

    ADS  Google Scholar 

  81. R. Lebrun, A. Ross, O. Gomonay, et al., Commun. Phys. 2, 50 (2019).

    Google Scholar 

  82. A. S. Borovik-Romanov and N. W. Kreines, Phys. Rep. 81, 351 (1982).

    ADS  Google Scholar 

  83. A. K. Zvezdin and V. A. Kotov, Magnetooptics of Thin Films (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  84. J. R. Sandercock, Solid State Commun. 15, 1715 (1974).

    ADS  Google Scholar 

  85. J. R. Sandercock and W. Wettling, Solid State Commun. 13, 1729 (1973).

    ADS  Google Scholar 

  86. W. Wettling, M. G. Cottam, and J. R. Sandercock, J. Phys. C 8, 211 (1975).

    ADS  Google Scholar 

  87. W. Jantz, J. R. Sandercock, and W. Wettling, J. Phys. C 9, 2229 (1976).

    ADS  Google Scholar 

  88. A. S. Borovik-Romanov, V. G. Jotikov, N. M. Kreines, et al., JETP Lett. 24, 207 (1976).

    ADS  Google Scholar 

  89. A. S. Borovik-Romanov. V. G. Jotikov, N. M. Kreines, and A. A. Pankov, Phys. B (Amsterdam, Neth.) 1275, 86 (1977).

  90. A. S. Borovik-Romanov, V. G. Zhotikov, N. M. Kreines, et al., JETP Lett. 24, 252 (1976).

    Google Scholar 

  91. S. O. Demokritov, N. M. Kreines, and V. I. Kudinov, JETP Lett. 41, 46 (1985).

    ADS  Google Scholar 

  92. A. S. Borovik-Romanov, S. O. Demokritov, N. M. Kreines, et al., Sov. Phys. JETP 61, 801 (1985).

    Google Scholar 

  93. A. S. Borovik-Romanov and N. M. Kreines, Brillouin-Mandelshtam Scattering in Magnetic Materials (Mir, Moscow, 1985).

  94. V. M. Agranovich and A. A. Maradudin, Spin Waves and Magnetic Exctations (North-Holland, Amsterdam, 1988), p. 81.

    Google Scholar 

  95. S. P. Parkin, K. P. Roche, M. G. Samant, et al., J. Appl. Phys. 85, 5828 (1999).

    ADS  Google Scholar 

  96. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).

    ADS  Google Scholar 

  97. J. R. Fermin, M. A. Lucena, A. Azevedo, et al., J. Appl. Phys. 87, 6421 (2000).

    ADS  Google Scholar 

  98. S. Khmelevskyi and P. Mohn, Appl. Phys. Lett. 93, 162503 (2008).

    ADS  Google Scholar 

  99. A. B. Shick, S. Khmelevskyi, O. N. Mryasov, et al., Phys. Rev. B 81, 212409 (2010).

    ADS  Google Scholar 

  100. V. M. T. S. Barthem, C. V. Colin, H. Mayaffre, et al., Nat. Commun. 4, 2892 (2013).

    ADS  Google Scholar 

  101. M. Arana, F. Estrada, D. S. Maior, et al., Appl. Phys. Lett. 111, 192409 (2017).

    ADS  Google Scholar 

  102. V. M. Barthem, C. V. Colin, R. Haettel, et al., J. Magn. Magn. Mater. 406, 289 (2016).

    ADS  Google Scholar 

  103. J. Zhao, A. V. Braga, R. Merlin, et al., Phys. Rev. B 73, 184434 (2006).

    ADS  Google Scholar 

  104. M. Grimsditch, L. E. McNeil, and D. J. Lockwood, Phys. Rev. B 58, 14462 (1998).

    ADS  Google Scholar 

  105. J. Milano, L. B. Steren, and M. Grimsditch, Phys. Rev. Lett. 93, 077601 (2004).

    ADS  Google Scholar 

  106. S. Bodnar, L. Šmejkal, I. Turek, et al., Nat. Commun. 9, 348 (2018).

    ADS  Google Scholar 

  107. X. Chen, X. Zhou, R. Cheng, et al., Nat. Mater. 18, 931 (2019).

    ADS  Google Scholar 

  108. P. A. Popov, A. R. Safin, and S. A. Nikitov, in Proceedings of the Conference EASTMAG–2019 (Yekaterinburg, 2019), p. 171.

  109. L. Baldrati, O. Gomonay, A. Ross, et al., Phys. Rev. Lett. 123, 1177201 (2019).

    Google Scholar 

  110. X. Zhang, Y. Zhou, and M. Ezawa, Sci. Rep. 6, 24795 (2016).

    ADS  Google Scholar 

  111. H. Xia, C. Jin, C. Song, et al., J. Phys. D 50, 505005 (2017).

    Google Scholar 

  112. W. Legr, D. Maccariello, F. Ajejas, et al., Nat. Mater. 19, 34 (2020).

    ADS  Google Scholar 

  113. I. Medlej, A. Hamadeh, and F. El Haj Hassan, Phys. B (Amsterdam, Neth.) 579, 411900 (2020).

  114. Yu. M. Bun’kov, Phys. Usp. 53, 848 (2010).

    ADS  Google Scholar 

  115. S. O. Demokritov, V. E. Demidov, O. Dzyapko, et al., Nature (London, U.K.) 443, 430 (2006).

    ADS  Google Scholar 

  116. I. S. Tupitsyn, P. C. E. Stamp, and A. L. Burin, Phys. Rev. Lett. 100, 257202 (2008).

    ADS  Google Scholar 

  117. O. Dzyapko, V. E. Demidov, and S. O. Demokritov, Phys. Usp. 53, 853 (2010).

    ADS  Google Scholar 

  118. O. Dzyapko, I. Lisenkov, P. Nowik-Boltyk, et al., Phys. Rev. B 96, 064438 (2017).

    ADS  Google Scholar 

  119. N. Arakawa, Phys. Rev. Lett. 121, 187202 (2018).

    ADS  Google Scholar 

  120. N. Arakawa, Phys. Rev. B 99, 014405 (2019).

    ADS  Google Scholar 

  121. S. N. Andrianov and S. A. Moiseev, Phys. Rev. A 90, 042303 (2014).

    ADS  Google Scholar 

  122. M. N. Baibich, J. M. Broto, A. Fert, et al., Phys. Rev. Lett. 61, 2472 (1988).

    ADS  Google Scholar 

  123. S. O. Demokritov, J. Phys. D 31, 925 (1998).

    ADS  Google Scholar 

  124. K. Yu. Guslienko, S. Choe, and S. Shin, Appl. Phys. Lett. 76, 3609 (2000).

    ADS  Google Scholar 

  125. R. W. Wang, D. L. Mills, E. E. Fullerton, et al., Phys. Rev. Lett. 72, 920 (1994).

    ADS  Google Scholar 

  126. R. W. Wang, D. L. Mills, E. E. Fullerton, et al., Phys. Rev. B 53, 2627 (1996).

    ADS  Google Scholar 

  127. S. Rakhmanova, D. L. Mills, and E. E. Fullerton, Phys. Rev. B 57, 476 (1998).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Government of the Russian Federation (agreement no. 074-02-2018-286), by the Russian Science Foundation (project no. 19-19-00607), by the Russian Foundation for Basic Research (project nos. 18-29-27018, 18-29-27020, 18-29-27026, 18-37-20005, 18-37-20048, 18-57-76001, 19-29-03015, 18-57-76001, 18-07-00509, 18-52-16006, and 19-32-90242), by the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (project nos. MK-283.2019.8, MK-3607.2019.9, MK-3650.2018.9, and MK-1870.2020.9), and by the Council of the Government of the Russian Federation for State Support of Research Headed by Leading Scientists at Higher Education Institutions, Institutions of State Academies of Sciences, and National Research Centers (project no. 2019-220-07-9114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Safin or S. A. Nikitov.

Ethics declarations

This article was prepared for the special issue dedicated to the centenary of A.S. Borovik-Romanov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safin, A.R., Nikitov, S.A., Kirilyuk, A.I. et al. Excitation of Terahertz Magnons in Antiferromagnetic Nanostructures: Theory and Experiment. J. Exp. Theor. Phys. 131, 71–82 (2020). https://doi.org/10.1134/S1063776120070110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120070110

Navigation