Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Atomic Displacements in the α–β Phase Transition in Ag2S and in Ag2S/Ag Heterostructure

  • 6 Accesses

Abstract

Orientation relationships between low-temperature monoclinic semiconductor α-Ag2S acanthite and high-temperature body-centered β-Ag2S argentite are determined. It is shown that, in cubic argentite, possible distances between silver atoms are too small for the sites of the metal sublattice to be occupied by Ag atoms with probability equal to one. With regard to the possible arrangement of Ag atoms, it is shown that, during the “acanthite–argentite” transformation, the jump of a silver ion from site (e) of monoclinic acanthite to site (j) of cubic argentite is the most probable process. It is established that the acanthite–argentite transformation in Ag2S/Ag heteronanostructure is accompanied by the formation of a conductive channel of silver Ag and β-Ag2S argentite under the application of an external voltage. The on-to-off-state current ratio in the synthesized Ag2S/Ag heteronanostructure is approximately equal to 670. For the Ag2S/Ag heteronanostructure, the energy barrier for the hopping of an Ag+ ion from an atomic site of monoclinic acanthite to a site of cubic argentite is estimated.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    A. Tang, Yu. Wang, H. Ye, C. Zhou, C. Yang, X. Li, H. Peng, F. Zhang, Y. Hou. and F. Teng, Nanotechnol. 24, 355602 (2013).

  2. 2

    C. Cui, X. Li, J. Liu, Y. Hou, Y. Zhao, and G. Zhong, Nanoscale Res. Lett. 10, 431 (2015).

  3. 3

    W. P. Lim, Z. Zhang, H. Y. Low, and W. S. Chin, Angew. Chem. Int. Ed. 43, 5685 (2004).

  4. 4

    J. Yang and J. Y. Ying, Angew. Chem. Int. Ed. 50, 4637 (2011).

  5. 5

    G. X. Zhu and Z. Xu, J. Amer. Chem. Soc. 133, 148 (2011).

  6. 6

    S. I. Sadovnikov, E. A. Kozlova, E. Yu. Gerasimov, A. A. Rempel, and A. I. Gusev, Int. J. Hydr. Energy 42, 25258 (2017).

  7. 7

    S. Shen, Y. Zhang, Y. Liu, L. Peng, X. Chen, and Q. Wang, Chem. Mater. 24, 2407 (2012).

  8. 8

    L. Liu, S. Hu, Y.-P. Dou, T. Liu, J. Lin, and Y. Wang, Beilstein J. Nanotechnol. 6, 1781 (2015).

  9. 9

    C. H. Liang, K. Terabe, T. Hasegawa, R. Negishi, T. Tamura, and M. Aono, Small 1, 971 (2005).

  10. 10

    C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 18, 485202 (2007).

  11. 11

    M. Morales-Masis, S. J. Molen, W. T. Fu, M. B. Hesselberth, and J. M. Ruitenbeek, Nanotechnol. 20, 095710 (2009).

  12. 12

    Z. Xu, Y. Bando, W. Wang, X. Bai, and D. Golberg, ACS Nano 4, 2515 (2010).

  13. 13

    A. N. Belov, O. V. Pyatilova, and M. I. Vorobiev, Adv. Nanopart. 3, 1 (2014).

  14. 14

    U. M. Jadhav, S. N. Patel, and R. S. Patil, Res. J. Chem. Sci. 3, 69 (2013).

  15. 15

    S. Xiong, B. Xi, K. Zhang, Y. Chen, J. Jiang, J. Hu, and H. C. Zeng, Sci. Rep. 3, 2177 (2013).

  16. 16

    C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, Biomaterials 35, 393 (2014).

  17. 17

    C. Xiao, J. Xu, K. Li, J. Feng, J. Yang, and Yi Xie, J. Am. Chem. Soc. 134, 4287 (2012).

  18. 18

    A. Eftekhari, V. J. Babu, and S. S. Ramakrishna, Int. J. Hydrogen Energy 42, 11078 (2017).

  19. 19

    S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem.A 5, 17676 (2017).

  20. 20

    S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties (Springer Int., Cham, Heidelberg, 2018).

  21. 21

    S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Russ. Chem. Rev. 87, 303 (2018).

  22. 22

    R. C. Sharma and Y. A. Chang, Bull. Alloy Phase Diagrams 7, 263 (1986).

  23. 23

    L. S. Ramsdell, Am. Mineralog. 28, 401 (1943).

  24. 24

    A. J. Frueh, Z. Kristallogr. 110, 136 (1958).

  25. 25

    R. Sadanaga and S. Sueno, Mineralog. J. Jpn. 5, 124 (1967).

  26. 26

    T. Blanton, S. Misture, N. Dontula, and S. Zdzieszynski, Powder Diffract. 26, 110 (2011).

  27. 27

    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Superlatt. Microstruct. 83, 35 (2015).

  28. 28

    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 20495 (2015).

  29. 29

    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 12466 (2015).

  30. 30

    A. I. Gusev and S. I. Sadovnikov, Semiconductors 50, 682 (2016).

  31. 31

    C. M. Perrott and N. H. Fletcher, J. Chem. Phys. 50, 2344 (1969).

  32. 32

    W. T. Thompson and S. N. Flengas, Can. J. Chem. 49, 1550 (1971).

  33. 33

    F. Grønvold and E. F. Westrum, J. Chem. Therm. 18, 381 (1986).

  34. 34

    S. I. Sadovnikov and A. I. Gusev, J. Therm. Anal. Calorim. 131, 1155 (2018).

  35. 35

    S. I. Sadovnikov, A. V. Chukin, A. A. Rempel, and A. I. Gusev, Phys. Solid State 58, 30 (2016).

  36. 36

    A. I. Gusev and S. I. Sadovnikov, Mater. Lett. 188, 351 (2017).

  37. 37

    A. I. Gusev, S. I. Sadovnikov, A. V. Chukin, and A. A. Rempel, Phys. Solid State 58, 251 (2016).

  38. 38

    S. I. Sadovnikov and A. I. Gusev, RF Patent No. 2637710 S1, Byull. Izobret. No. 34 (2017), p. 1.

  39. 39

    X'Pert HighScore Plus, Version 2.2e (2.2.5) (PANalytical B. V., Almedo, the Netherlands, 2009).

  40. 40

    S. I. Sadovnikov, A. I. Gusev, A. V. Chukin, and A. A. Rempel, Phys. Chem. Chem. Phys. 18, 4617 (2016).

  41. 41

    S. I. Sadovnikov and E. Yu. Gerasimov, Nanoscale Adv. 1, 1581 (2019).

  42. 42

    C. L. Chen, Z. Hu, Y. Li, L. Liu, H. Mori, and Z. Wang, Sci. Rep. 6, 19545 (2016).

  43. 43

    S. I. Sadovnikov and A. A. Rempel, Semiconductors 53, 941 (2019).

  44. 44

    R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

  45. 45

    Yu. Yu. Lur’e, Handbook in Analytic Chemistry (Khimiya, Moscow, 1989) [in Russian].

  46. 46

    S. I. Sadovnikov, N. S. Kozhevnikova, V. G. Pushin, and A. A. Rempel, Inorg. Mater. 48, 21 (2012).

  47. 47

    S. I. Sadovnikov, A. A. Rempel’, and A. I. Gusev, JETP Lett. 106, 587 (2017).

  48. 48

    D. Wang, L. Liu, Y. Kim, Z. Huang, D. Pantel, D. Hesse, and M. Alexe, Appl. Phys. Lett. 98, 243109 (2011).

  49. 49

    S. Sun and D. Xia, Solid State Ionics 179, 2330 (2008).

  50. 50

    S. I. Sadovnikov and A. I. Gusev, J. Nanopart. Res. 18, 277 (2016).

  51. 51

    A. A. Valeeva, S. Z. Nazarova, and A. A. Rempel, JETP Letters 101, 258–263 (2015).

  52. 52

    A. A. Valeeva, K. A. Petrovykh, H. Schroettner, and A. A. Rempel, Inorg. Mater. 51, 1132–1137 (2015).

  53. 53

    A. A. Valeeva, S. Z. Nazarova, and A. A. Rempel, Phys. Solid State 58, 772–778 (2016).

Download references

ACKNOWLEDGMENTS

We are grateful to E.Yu. Gerasimov for help in electron microscope measurements and to A.V. Chukin for help in high-temperature X-ray measurements.

Author information

Correspondence to S. I. Sadovnikov.

Additional information

Translated by I. Nikitin

APPENDIX

APPENDIX

In this work, we used the following relations for the transformation of monoclinic (space group P21/c) atomic coordinates (xmon, ymon, zmon) to cubic (space group Im\(\bar {3}\)m) atomic coordinates (xbcc, ybcc, zbcc) of bcc argentite in accordance with Fig. 1:

$${{x}_{{bcc}}} = {{x}_{{mon}}}{\text{/}}2 + {{y}_{{mon}}},$$
$${{y}_{{bcc}}} = {{x}_{{mon}}}{\text{/}}2 - {{y}_{{mon}}} + 1,$$
$${{z}_{{bcc}}} = - {{x}_{{mon}}} + 2{{z}_{{mon}}} + 1.$$

In the literature, one can find a different mutual orientation of the unit cells of α-Ag2S acanthite and β‑Ag2S argentite.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, S.I., Gusev, A.I. Atomic Displacements in the α–β Phase Transition in Ag2S and in Ag2S/Ag Heterostructure. J. Exp. Theor. Phys. 129, 1005–1016 (2019). https://doi.org/10.1134/S1063776119120082

Download citation