Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Argentite–Acanthite Transition in Silver Sulfide as a Two-Sublattice Ordering

  • 2 Accesses

Abstract

We propose a model of phase transformation cubic argentite–monoclinic acanthite in silver sulfide Ag2S (AgS0.5) as ordering in two argentite sublattices. We have determined the channel of the disorder–order transition including four nonequivalent superstructure vectors of stars {k9} and {k4}. For monoclinic acanthite α-Ag2S, we have calculated the distribution function for silver atoms occupying b positions in argentite, as well as the distribution function for sulfur atoms. Ordering in both sublattices is complicated by static atomic displacements. The displacement of S atoms distort the body-centered cubic (bcc) nonmetallic argentite sublattice, forming a monoclinic lattice in which silver atoms are at large distances from one another and occupy their crystallographic positions with unit probability. We have determined the range of admissible values of long-range order parameters η9 and η4 for the model monoclinic ordered α-Ag2S phase.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    R. C. Sharma and Y. A. Chang, Bull. Alloy Phase Diagrams 7, 263 (1986).

  2. 2

    R. C. Sharma and Y. A. Chang, in Binary Alloy Phase Diagrams, Ed. by T. B. Massalski, H. Okamoto, and L. Kacprzak (ASM Intern. Publ., Metals Park, Ohio, USA, 1990), p. 86.

  3. 3

    S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties (Springer Int., Cham, Heidelberg, 2018).

  4. 4

    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Superlatt. Microstruct. 83, 35 (2015).

  5. 5

    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 12466 (2015).

  6. 6

    H. Rau, J. Phys. Chem. Sol. 35, 1553 (1974).

  7. 7

    H. Reye and H. Schmalzried, Z. Phys. Chem. Neue Folge 128, 93 (1981).

  8. 8

    W. T. Thompson and S. N. Flengas, Can. J. Chem. 49, 1550 (1971).

  9. 9

    R. Sadanaga and S. Sueno, Mineralog. J. Jpn. 5, 124 (1967).

  10. 10

    A. I. Gusev and S. I. Sadovnikov, Semiconductors 50, 682 (2016).

  11. 11

    S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A 5, 17676 (2017).

  12. 12

    T. Blanton, S. Misture, N. Dontula, and S. Zdzieszynski, Powder Diffract. 26, 110 (2011).

  13. 13

    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 20495 (2015).

  14. 14

    J. B. Boyce and B. A. Hubermam, Phys. Rep. 51, 189 (1979).

  15. 15

    L. W. Strock, Z. Phys. Chem. B 25, 411 (1934).

  16. 16

    L. W. Strock, Z. Phys. Chem. B 31, 132 (1936).

  17. 17

    K. Honma and K. Iida, J. Phys. Soc. Jpn. 56, 1828 (1987).

  18. 18

    O. Alekperov, Z. Jahangirli, and R. Paucar, Phys. Status Solidi B 253, 1 (2016).

  19. 19

    S. Sun and D.-G. Xia, Sol. St. Ion. 179, 2330 (2008).

  20. 20

    C. Liang, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 18, 485202 (2007).

  21. 21

    S. I. Sadovnikov and A. I. Gusev, J. Nanopart. Res. 18, 277 (2016).

  22. 22

    A. I. Gusev and S. I. Sadovnikov, Mater. Lett. 188, 351 (2017).

  23. 23

    S. I. Sadovnikov and A. I. Gusev, JETP Lett. 109, 584 (2019).

  24. 24

    A. G. Khachaturyan, Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].

  25. 25

    A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides (Springer, Berlin, 2001). https://doi.org/10.1007/978-3-662-04582-4

  26. 26

    A. I. Gusev, Nonstoichiometry and Disorder, Short-Range and Long-Range Order in Solids (Fizmatlit, Moscow, 2007) [in Russian].

  27. 27

    A. A. Rempel’ and A. I. Gusev, Nonstoichiometry in Solids (Fizmatlit, Moscow, 2018) [in Russian].

  28. 28

    O. V. Kovalev, Irreducible and Induced Representations and Co-Representations of Fedorov’s Groups (Nauka, Moscow, 1986) [in Russian].

  29. 29

    Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutronography of Magnets (Atomizdat, Moscow, 1981) [in Russian].

  30. 30

    S. I. Sadovnikov and E. Yu. Gerasimov, Nanoscale Adv. 1, 1581 (2019).

  31. 31

    S. I. Sadovnikov and A. A. Rempel, Semiconductors 53, 941 (2019).

  32. 32

    A. I. Gusev and A. A. Rempel, Phys. Status Solidi A 135, 15 (1993).

  33. 33

    S. I. Sadovnikov, A. I. Gusev, A. V. Chukin, and A. A. Rempel, Phys. Chem. Chem. Phys. 18, 4617 (2016).

  34. 34

    F. Grønvold and E. F. Westrum, J. Chem. Therm. 18, 381 (1986).

  35. 35

    A. I. Gusev, A. S. Kurlov, and V. N. Lipatnikov, J. Sol. St. Chem. 180, 3234 (2007).

  36. 36

    A. I. Gusev, J. Exp. Theor. Phys. 113, 96 (2011).

  37. 37

    A. I. Gusev, Phys. Usp. 57, 839 (2014).

  38. 38

    A. A. Valeeva, A. A. Rempel’, and A. I. Gusev, JETP Lett. 71, 621 (2000).

  39. 39

    A. I. Gusev, J. Exp. Theor. Phys. 117, 293 (2013).

  40. 40

    D. A. Davydov and A. I. Gusev, J. Exp. Theor. Phys. 108, 267 (2009).

  41. 41

    A. I. Gusev, D. A. Davydov, and A. A. Valeeva, J. Alloys Compd. 509, 1364 (2011).

  42. 42

    S. I. Sadovnikov, N. S. Kozhevnikova, and A. A. Rempel, Semiconductors 44, 1349 (2010).

  43. 43

    S. I. Sadovnikov and A. I. Gusev, J. Alloys Compd. 610, 196 (2014).

  44. 44

    S. I. Sadovnikov, A. V. Chukin, A. A. Rempel, and A. I. Gusev, Phys. Sol. St. 58, 30 (2016).

  45. 45

    S. I. Sadovnikov, E. A. Kozlova, E. Yu. Gerasimov, A. A. Rempel, and A. I. Gusev, Int. J. Hydrogen Energy 42, 25258 (2017).

  46. 46

    S. I. Sadovnikov, N. S. Kozhevnikova, and A. I. Gusev, Semiconductors 45, 1559 (2011).

  47. 47

    A. I. Gusev, S. I. Sadovnikov, A. V. Chukin, and A. A. Rempel, Phys. Sol. St. 58, 251 (2016).

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 19-73-20012) through the Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences.

Author information

Correspondence to A. I. Gusev.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gusev, A.I., Sadovnikov, S.I. Argentite–Acanthite Transition in Silver Sulfide as a Two-Sublattice Ordering. J. Exp. Theor. Phys. 129, 1045–1054 (2019). https://doi.org/10.1134/S1063776119120045

Download citation