Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Probe Mössbauer Diagnostics of Charge Ordering in Manganites CaCuxMn7–xO12 (0 ≤ x ≤ 1)

  • 3 Accesses

Abstract

We present the results of our 57Fe probe Mössbauer study in manganites CaCuxMn6.96–x57Fe0.04O12 (0 ≤ x ≤ 1). We have established that for compositions 0 ≤ x ≤ 0.15 near the structural R\(\bar {3}\)Im\(\bar {3}\) transition (at TTCO), an increase in the temperature leads to a decrease in the content of the rhombohedral phase (R\(\bar {3}\)) against a background of the “nucleation” and gradual increase in the fraction of the cubic phase (Im\(\bar {3}\)), in which all octahedral positions of manganese are equivalent due to the electron exchange Mn3+ ↔ Mn4+. The increase in the electron exchange frequency is assumed to be related to a weakening of the electron–lattice interaction of Jahn–Teller Mn3+ cations as x → 0.4. An increase in the copper content leads to a sharp decrease in the phase transition temperature TCO. A single component corresponding to the cubic phase (Im\(\bar {3}\)) is present in the spectrum starting from x ≥ 0.4. Based on our Mössbauer data, we have constructed a Tx phase diagram.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    V. M. Loktev and Yu. G. Pogorelov, J. Low Temp. Phys. 26, 171 (2000).

  2. 2

    C. N. R. Rao, A. Arulraj, P. N. Santosh, et al., Chem. Mater. 10, 2714 (1998).

  3. 3

    C. N. R. Rao, J. Phys. Chem. B 104, 5877 (2000).

  4. 4

    D. V. Efremov, J. van den Brink, and D. I. Khomskii, Phys. B (Amsterdam, Neth.) 359–361, 1433 (2005).

  5. 5

    D. V. Efremov, J. van den Brink, and D. I. Khomskii, Nat. Mater. 3, 853 (2004).

  6. 6

    J. B. Goodenough, Phys. Rev. 100, 564 (1955).

  7. 7

    E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

  8. 8

    J. García, M. C. Sánchez, J. Blasco, et al., J. Phys.: Condens. Matter 13, 3243 (2001).

  9. 9

    J. Rodríguez-Carvajal, A. Daoud-Aladine, L. Pinsard-Gaudart, et al., Phys. B (Amsterdam, Neth.) 320, 1 (2002).

  10. 10

    A. Daoud-Aladine, J. Rodríguez-Carvajal, L. Pinsard-Gaudart, et al., Phys. Rev. Lett. 89, 097205 (2002).

  11. 11

    A. Daoud-Aladine, C. Perca, L. Pinsard-Gaudart, et al., Phys. Rev. Lett. 101, 166404 (2008).

  12. 12

    A. Trokiner, A. Yakubovskii, S. Verkhovskii, et al., Phys. Rev. B 74, 092403 (2006).

  13. 13

    A. N. Vasil’ev and O. S. Volkova, J. Low Temp. Phys. 33, 895 (2007).

  14. 14

    I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina, et al., Solid State Commun. 142, 509 (2007).

  15. 15

    I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina, et al., Phys. Rev. B 76, 214407 (2007).

  16. 16

    B. Bochu, J. L. Buevoz, J. Chenavas, et al., Solid State Commun. 36, 133 (1980).

  17. 17

    I. O. Troyanchuk and A. N. Chobot, Crystallogr. Rep. 42, 983 (1997).

  18. 18

    R. Przenioslo, I. Sosnowska, D. Hohlwein, et al., Solid State Commun. 111, 687 (1999).

  19. 19

    W. S lawinski, R. Przenioslo, I. Sosnowska, et al., J. Solid State Chem. 179, 2443 (2006).

  20. 20

    R. Przeniosł o, I. Sosnowska, W. van Beek, et al., J. Alloys Compd. 362, 218 (2004).

  21. 21

    M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

  22. 22

    M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1622, 40 (2014).

  23. 23

    A. V. Sobolev, V. S. Rusakov, A. S. Moskvin, et al., J. Phys.: Condens. Matter 29, 275803 (2017).

  24. 24

    J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 77, 172409 (2008).

  25. 25

    Z. Cheng, Z. Wang, N. Di, et al., Appl. Phys. Lett. 83, 1587 (2003).

  26. 26

    E. K Abdel-Khalek, W. M. El-Meligy, E. A. Mohamed, et al., J. Phys.: Condens. Matter 21, 026003 (2009).

  27. 27

    X. Ma, Z. Kou, N. Di, et al., Phys. Status Solidi B 241, 3029 (2004).

  28. 28

    M. Pissas and A. Simopoulos, J. Phys.: Condens. Matter 16, 7419 (2004).

  29. 29

    J.-S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 96, 247202 (2006).

  30. 30

    F. Rivadulla, M. Otero-Leal, A. Espinosa, et al., Phys. Rev. Lett. 96, 016402 (2006).

  31. 31

    A. Trokiner, S. Verkhovskii, A. Gerashenko, et al., Phys. Rev. B 87, 125142 (2013).

  32. 32

    M. Pissas, G. Papavassiliou, E. Devlin, et al., Eur. Phys. J. B 47, 221 (2005).

  33. 33

    A. Simopoulos, M. Pissas, G. Kallias, et al., Phys. Rev. B 59, 1263 (1999).

  34. 34

    J. M. Barandiaran, J. M. Greneche, T. Hernandez, et al., J. Phys.: Condens. Matter 14, 12563 (2002).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-33-20214).

Author information

Correspondence to I. S. Glazkova.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glazkova, I.S., Rusakov, V.S., Sobolev, A.V. et al. Probe Mössbauer Diagnostics of Charge Ordering in Manganites CaCuxMn7–xO12 (0 ≤ x ≤ 1). J. Exp. Theor. Phys. 129, 1017–1028 (2019). https://doi.org/10.1134/S1063776119110104

Download citation