Advertisement

Journal of Experimental and Theoretical Physics

, Volume 129, Issue 3, pp 368–374 | Cite as

X-Ray Reflectometry of the Adsorption Octadecanamide Film at the Toluene–Water Interface

  • A. M. TikhonovEmail author
  • Yu. O. VolkovEmail author
ATOMS, MOLECULES, OPTICS
  • 16 Downloads

Abstract

The structure of an adsorption octadecanamide film at the planar toluene–water interface is studied by X-ray reflectometry using synchrotron radiation with photon energy of 15 keV. The electron density (polarizability) profiles, according to which the interface structure is determined by the pH level in the water subphase, are reconstructed from experimental data with the help of a model-independent approach. For a high pH ≈ 11, the adsorption film is a crystalline octadecanamide monolayer with a thickness of about 26 Å, in which aliphatic tails of surfactant are extended along the normal to the surface. For low pH ≈ 2, the thickness of the surface structure consisting of the crystalline monolayer directly on the toluene–water interface and a thick layer of deposited octadecanamide micelles reaches about 500 Å. In our opinion, the condensation of nonionogenic surfactant micelles for which the surface concentration of the surfactant increases significantly is caused by a change in the polarization direction upon a decrease in the pH level in the electric double layer at the interface between the water subphase and the octadecanamide monolayer. The shape of the reconstructed electron density profiles also indicates the existence of a plane of the closest approach of surfactant micelles to the interface at a distance of about 70 Å from it.

Notes

FUNDING

Synchrotron NSLS was used under the support of the Department of Energy (USA) (contract no. DE-AC02-98GH10886). The X19C station was financed from the ChemPatCARS funds of the University of Chicago, University of Illinois in Chicago, and the State University of New York in Stony Brook. The theoretical part of this work was supported by the Russian Science Foundation (project no. 18-12-00108).

REFERENCES

  1. 1.
    M. Lin, J. L. Ferpo, P. Mansaura, and J. F. Baret, J. Chem. Phys. 71, 2202 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    T. Takiue, T. Fukuda, D. Murakami, H. Sakamoto, H. Matsubara, and M. Aratono, J. Phys. Chem. B 113, 14667 (2009).CrossRefGoogle Scholar
  3. 3.
    T. Takiue, F. Nakamura, D. Murakami, T. Fukuda, A. Shuto, H. Matsubara, and M. Aratono, J. Phys. Chem. B 113, 6305 (2009).CrossRefGoogle Scholar
  4. 4.
    S. V. Kiriyan and B. A. Altoiz, Tr. MFTI 2 (2), 101 (2010).Google Scholar
  5. 5.
    B. A. Altoiz, A. F. Butenko, and S. V. Kiriyan, Tech. Phys. 63, 1 (2018).CrossRefGoogle Scholar
  6. 6.
    D. M. Mitrinovic, A. M. Tikhonov, M. Li, Z. Huang, and M. L. Schlossman, Phys. Rev. Lett. 85, 582 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    S. Engemann, H. Reichert, H. Dosch, J. Bilgram, V. Honkimaki, and A. Snigirev, Phys. Rev. Lett. 92, 205701 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    G. Luo, S. Malkova, J. Yoon, D. G. Schultz, B. Lin, M. Meron, I. Benjamin, P. Vanysek, and M. L. Schlossman, Science (Washington, DC, U. S.) 311, 216 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    A. M. Tikhonov and M. L. Schlossman, J. Phys.: Condens. Matter 19, 375101 (2007).Google Scholar
  10. 10.
    L. Tamam, D. Pontoni, Z. Sapir, Sh. Yefet, E. Sloutskin, B. M. Ocko, H. Reichert, and M. Deutsch, Proc. Nat. Acad. Sci. U. S. A. 108, 5522 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. Tokiwa, H. Sakamoto, T. Takiue, M. Aratono, and H. Matsubara, J. Phys. Chem. B 119, 6235 (2015).CrossRefGoogle Scholar
  12. 12.
    M. K. Sanyal, V. V. Agrawal, M. K. Bera, K. P. Kalyanikutty, J. Daillant, Ch. Blot, S. Kubowicz, O. Konovalov, and C. N. R. Rao, J. Phys. Chem. C 112, 1739 (2008).CrossRefGoogle Scholar
  13. 13.
    A. M. Tikhonov, JETP Lett. 104, 309 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    T. Takiue, T. Tottori, K. Tatsuta, H. Matsubara, H. Tanida, K. Nitta, T. Uruga, and M. Aratono, J. Phys. Chem. B 116, 13739 (2012).CrossRefGoogle Scholar
  15. 15.
    A. M. Tikhonov, JETP Lett. 106, 576 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    A. M. Tikhonov, JETP Lett. 106, 743 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    I. V. Kozhevnikov, Doctoral (Phys. Math.) Dissertation (Shubnikov Inst. Crystallogr. RAS, Moscow, 2013).Google Scholar
  18. 18.
    A. M. Tikhonov, D. M. Mitrinovic, M. Li, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 104, 6336 (2000).CrossRefGoogle Scholar
  19. 19.
    V. Honkimaki, H. Reichert, J. Okasinski, and H. Dosch, J. Synchrotr. Rad. 13, 426 (2006).Google Scholar
  20. 20.
    A. M. Tikhonov, JETP Lett. 108, 102 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement 1956–1959, Ed. by L. E. Sutton, Spec. Publ. No. 18 (The Chem. Soc., London, 1965).Google Scholar
  22. 22.
    A. Goebel and K. Lunkenheimer, Langmuir 13, 369 (1997).CrossRefGoogle Scholar
  23. 23.
    A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed. (Wiley, New York, 1976).Google Scholar
  24. 24.
    L. L. Schramm and L. G. Hepler, Can. J. Chem. 72, 1915 (1994).CrossRefGoogle Scholar
  25. 25.
    J. Saien and S. Akbari, J. Chem. Eng. Data 51, 1832 (2006).CrossRefGoogle Scholar
  26. 26.
    M. L. Schlossman, D. Synal, Y. Guan, M. Meron, G. Shea-McCarthy, Z. Huang, A. Acero, S. M. Williams, S. A. Rice, and P. J. Viccaro, Rev. Sci. Instrum. 68, 4372 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    L. Hanley, Y. Choi, E. R. Fuoco, F. A. Akin, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, and M. L. Schlossman, Nucl. Instrum. Methods Phys. Res. B 203, 116 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    J. Koo, S. Park, S. Satija, A. M. Tikhonov, J. C. Sokolov, M. H. Rafailovich, and T. Koga, J. Coll. Interf. Sci. 318, 103 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    A. M. Tikhonov, J. Chem. Phys. 130, 024512 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    A. M. Tikhonov, J. Exp. Theor. Phys. 127, 797 (2018).ADSCrossRefGoogle Scholar
  31. 31.
    M. V. Smoluchovsky, Ann. Phys. 25, 205 (1908).CrossRefGoogle Scholar
  32. 32.
    L. Mandelstamm, Ann. Phys. 41, 609 (1913).CrossRefGoogle Scholar
  33. 33.
    I. L. Fabelinskii, Phys. Usp. 43, 89 (2000).ADSCrossRefGoogle Scholar
  34. 34.
    F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).ADSCrossRefGoogle Scholar
  35. 35.
    L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).CrossRefGoogle Scholar
  36. 36.
    S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).ADSCrossRefGoogle Scholar
  37. 37.
    A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J. Als-Nielsen, Phys. Rev. A 38, 2457 (1988).ADSCrossRefGoogle Scholar
  38. 38.
    P. S. Venkatesh, T. Takiue, G. Guangming, A. M. Tikhonov, N. Ikeda, M. Aratono, and M. L. Schlossman, J. Dispers. Sci. Technol. 27, 715 (2006).CrossRefGoogle Scholar
  39. 39.
    D. M. Small, The Physical Chemistry of Lipids (Plenum, New York, 1986).CrossRefGoogle Scholar
  40. 40.
    D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).ADSCrossRefGoogle Scholar
  41. 41.
    I. R. Peterson, G. Brezesinski, B. Struth, and E. Scalas, J. Phys. Chem. B 102, 9437 (1998).CrossRefGoogle Scholar
  42. 42.
    I. V. Kozhevnikov, Nucl. Instrum. Methods Phys. Res., Sect. A 508, 519 (2003).Google Scholar
  43. 43.
    A. M. Tikhonov, V. E. Asadchikov, and Yu. O. Volkov, JETP Lett. 102, 478 (2015).ADSCrossRefGoogle Scholar
  44. 44.
    A. M. Tikhonov, V. E. Asadchikov, Yu. O. Volkov, B. S. Roshchin, I. S. Monakhov, and I. S. Smirnov, JETP Lett. 104, 873 (2016).ADSCrossRefGoogle Scholar
  45. 45.
    A. M. Tikhonov, V. E. Asadchikov, Yu. O. Volkov, B. S. Roshchin, and Yu. A. Ermakov, J. Exp. Theor. Phys. 125, 1051 (2017).ADSCrossRefGoogle Scholar
  46. 46.
    B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).ADSCrossRefGoogle Scholar
  47. 47.
    J. W. Gibbs, Collected Works (Dover, New York, 1961), Vol. 1, p. 219.zbMATHGoogle Scholar
  48. 48.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  49. 49.
    N. Matubayasi, K. Motomura, M. Aratono, and R. Matuura, Bull. Chem. Soc. Jpn. 51, 2800 (1978).CrossRefGoogle Scholar
  50. 50.
    C. J. Radke, Adv. Coll. Interf. Sci. 222, 600 (2015).CrossRefGoogle Scholar
  51. 51.
    J. W. McBain, Trans. Faraday Soc. 9, 99 (1913).Google Scholar
  52. 52.
    P. Becher, Emulsions: Theory and Practice, 3rd ed. (Am. Chem. Soc., Oxford Univ. Press, Washington, D. C., 2001).Google Scholar
  53. 53.
    J. H. Schulman, W. Stoeckenius, and L. M. Prince, J. Phys. Chem. 63, 1677 (1959).CrossRefGoogle Scholar
  54. 54.
    M. Kahlweit, R. Strey, P. Firman, D. Haase, J. Jen, and R. Schomacker, Langmuir 4, 499 (1988).CrossRefGoogle Scholar
  55. 55.
    M. V. Flores, E. C. Voutsas, N. Spiliotis, G. M. Eccleston, G. Bell, D. P. Tassios, and P. J. Halling, J. Coll. Interf. Sci. 240, 277 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Kapitza Institute of Physical Problems, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Solid State Physics, Russian Academy of SciencesChernogolovkaRussia
  3. 3.Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia

Personalised recommendations