Advertisement

Journal of Experimental and Theoretical Physics

, Volume 129, Issue 3, pp 478–483 | Cite as

Amplitude Instability of Charged Particles in a Body-Centered Cubic Cell

  • O. S. VaulinaEmail author
STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • 7 Downloads

Abstract

The conditions for the formation of amplitude instabilities in 3D Yukawa systems consisting of nine charged particles in a body-centered cubic (bcc) cell have been investigated. The criterion for the formation of amplitude instability has been sought using an analytic approach based on determining the point of inflection of the potential energy of the system during deviation of particles from their equilibrium position. The results have been compared with melting criteria for extended bcc lattices.

Notes

FUNDING

This work was supported in part by the Russian Foundation for Basic Research (project no. 18-38-20175) and by the program of the Presidium of the Russian Academy of Sciences.

REFERENCES

  1. 1.
    O. S. Vaulina, O. F. Petrov, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Dusty Plasma: Experiment and Theory (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  2. 2.
    Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010).Google Scholar
  3. 3.
    A. Ivlev, G. Morfill, H. Lowen, and C. P. Royall, Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids (World Scientific, Singapore, 2012).CrossRefGoogle Scholar
  4. 4.
    Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York, 1974).Google Scholar
  5. 5.
    A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Chemical Processes (Khimiya, Moscow, 1986) [in Russian].Google Scholar
  6. 6.
    B. Pullman, Intermolecular Interactions: from Diatomics to Biopolymers (Wiley Intersci., Chichester, 1978).Google Scholar
  7. 7.
    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, London, 1982).zbMATHGoogle Scholar
  8. 8.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley Intersci., Chichester, 1975).zbMATHGoogle Scholar
  9. 9.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981).Google Scholar
  10. 10.
    O. S. Vaulina, X. G. Adamovich, and S. V. Vladimirov, Phys. Scr. 79, 035501 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    I. I. Lisina and O. S. Vaulina, Europhys. Lett. 103, 55002 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    O. S. Vaulina, I. I. Lisina, and K. G. Koss, Plasma Phys. Rep. 39, 394 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    O. S. Vaulina, A. P. Nefedov, O. F. Petrov, and V. E. Fortov, J. Exp. Theor. Phys. 91, 1147 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    O. S. Vaulina, Europhys. Lett. 115, 10007 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Ivlev, A. G. Khrapak, S. A. Khrapak, B. M. Annaratone, G. Morfill, and K. Yoshino, Phys. Rev. E 68, 026403 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    I. Lisina, E. Lisin, and O. Vaulina, Phys. Plasmas 23, 033704 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, Phys. Rev. E 56, 4671 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    D. H. Dubin and H. Dewitt, Phys. Rev. B 49, 3043 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    W. G. Hoover, D. A. Young, and R. Grover, J. Chem. Phys. 56, 2207 (1972).ADSCrossRefGoogle Scholar
  20. 20.
    O. S. Vaulina and X. G. Koss, Phys. Rev. E 92, 042155 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    O. S. Vaulina and S. V. Vladimirov, Plasma Phys. 9, 835 (2002).CrossRefGoogle Scholar
  22. 22.
    K. G. Koss, O. F. Petrov, M. I. Myasnikov, K. B. Statsenko, and M. M. Vasiliev, J. Exp. Theor. Phys. 122, 98 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    I. I. Lisina, O. S. Vaulina, and E. A. Lisin, Phys. Plasmas 24, 113705 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    O. S. Vaulina, J. Exp. Theor. Phys. 127, 503 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    O. S. Vaulina, I. I. Lisina, and E. A. Lisin, Plasma Phys. Rep. 44, 270 (2018).ADSCrossRefGoogle Scholar
  26. 26.
    O. S. Vaulina and S. A. Khrapak, J. Exp. Theor. Phys. 90, 287 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    O. S. Vaulina, S. V. Vladimirov, O. F. Petrov, and V. E. Fortov, Phys. Rev. Lett. 88, 245002 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    O. S. Vaulina, X. G. Koss, Yu. V. Khrustalyov, O. F. Petrov, and V. E. Fortov, Phys. Rev. E 82, 056411 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    R. T. Farouki and S. Hamaguchi, J. Chem. Phys. 101, 9885 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, Phys. Rev. E 56, 4671 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    E. J. Meijer and D. Frenkel, J. Chem. Phys. 94, 2269 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    M. J. Stevens and M. O. Robbins, J. Chem. Phys. 98, 2319 (1993).ADSCrossRefGoogle Scholar
  33. 33.
    M. O. Robbins, K. Kremer, and G. S. Grest, J. Chem. Phys. 88, 3286 (1988).ADSCrossRefGoogle Scholar
  34. 34.
    O. S. Vaulina and X. G. Koss, Phys. Lett. A 380, 1290 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    N. G. Gusein-zade and D. N. Klochkov, Kratk. Soobshch. Fiz. FIAN, No. 18, 10 (2005).Google Scholar
  36. 36.
    H. Ohta and S. Hamaguchi, Phys. Plasmas 7, 4506 (2000).ADSCrossRefGoogle Scholar
  37. 37.
    O. S. Vaulina, O. F. Petrov, and V. E. Fortov, JETP 99, 711 (2005).Google Scholar
  38. 38.
    O. S. Vaulina and K. G. Adamovich, J. Exp. Theor. Phys. 106, 955 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    O. S. Vaulina, K. G. Adamovich, O. F. Petrov, and V. E. Fortov, J. Exp. Theor. Phys. 107, 313 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations