Temperature-Dependent Magnetoresistance of Single-Layer Graphene
- 19 Downloads
Abstract
The magnetoresistances of single-layer graphene samples with various types of scattering impurities are measured over wide temperature and magnetic field ranges. The magnetoresistance of samples with a short-range potential is shown to be proportional to the square root of the magnetic field except for the cases of relatively low concentrations, where the magnetoresistance is linear. The square-root temperature dependence of the magnetoresistance is analyzed and good agreement with theoretical calculations is obtained. These results indicate that the square-root magnetoresistance in low magnetic fields can be considered as a characteristic feature of single-layer graphene with a short-range disorder.
Notes
ACKNOWLEDGMENTS
We thank I.V. Gornyi for helpful discussions.
FUNDING
G.Yu.V acknowledges the support of the Russian Science Foundation, project no. 17-72-10134.
REFERENCES
- 1.P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, et al., Phys. Rev. B 87, 165432 (2013).ADSCrossRefGoogle Scholar
- 2.T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974).ADSCrossRefGoogle Scholar
- 3.I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, et al., Rev. Mod. Phys. 84, 1709 (2012).ADSCrossRefGoogle Scholar
- 4.N. H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998).ADSCrossRefGoogle Scholar
- 5.K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007).ADSCrossRefGoogle Scholar
- 6.E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. 98, 186806 (2007).ADSCrossRefGoogle Scholar
- 7.A. M. Goossens, V. E. Calado, A. Barreiro, et al., App. Phys. Lett. 100, 073110 (2012).ADSCrossRefGoogle Scholar
- 8.A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. 81, 109 (2009).ADSGoogle Scholar
- 9.S. Das Sarma, S. Adam, E. H. Hwang, et al., Rev. Mod. Phys. 83, 407 (2011).ADSCrossRefGoogle Scholar
- 10.S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, et al., Phys. Rev. Lett. 100, 016602 (2008).ADSCrossRefGoogle Scholar
- 11.Y.-W. Tan Y. Zhang, K. Bolotin, et al., Phys. Rev. Lett. 99, 246803 (2007).Google Scholar
- 12.T. Stauber, N. M. R. Peres, and F. Guinea, Phys. Rev. B 76, 205423 (2007).ADSCrossRefGoogle Scholar
- 13.N. M. R. Peres, J. Phys.: Condens. Matter 21, 323201 (2009).Google Scholar
- 14.P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, et al., Phys. Rev. Lett. 114, 156601 (2015).ADSCrossRefGoogle Scholar
- 15.P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, et al., Phys. Rev. B 95, 165410 (2017).ADSCrossRefGoogle Scholar
- 16.P. S. Alekseeva, I. V. Gornyi, A. P. Dmitriev, V. Yu. Kachorovskii, and M. A. Semina, Semiconductors 51, 766 (2017).ADSCrossRefGoogle Scholar
- 17.G. Yu. Vasileva, D. Smirnov, Yu. L. Ivanov, et al., Phys. Rev. B 93, 195430 (2016).ADSCrossRefGoogle Scholar
- 18.G. Yu. Vasileva, P. S. Alekseev, Yu. L. Ivanov, Yu. B. Vasil’ev, D. Smirnov, H. Shmidt, R. J. Haug, F. Gouider, and G. Nachtwei, JETP Lett. 96, 471 (2012).ADSCrossRefGoogle Scholar
- 19.Note that in strong magnetic fields, the square root magnetoresistance can be masked by Shubnikov-de Haas oscillations.Google Scholar
- 20.E. V. Kurganova, S. Wiedmann, A. J. M. Giesbers, et al., Phys. Rev. B 87, 085447 (2013).ADSCrossRefGoogle Scholar