Advertisement

Journal of Experimental and Theoretical Physics

, Volume 129, Issue 3, pp 438–443 | Cite as

Temperature-Dependent Magnetoresistance of Single-Layer Graphene

  • G. Yu. VasilevaEmail author
  • P. S. Alekseev
  • Yu. B. Vasil’ev
  • A. P. Dmitriev
  • V. Yu. Kachorovskii
  • D. Smirnov
  • H. Schmidt
  • R. Haug
ELECTRONIC PROPERTIES OF SOLID
  • 19 Downloads

Abstract

The magnetoresistances of single-layer graphene samples with various types of scattering impurities are measured over wide temperature and magnetic field ranges. The magnetoresistance of samples with a short-range potential is shown to be proportional to the square root of the magnetic field except for the cases of relatively low concentrations, where the magnetoresistance is linear. The square-root temperature dependence of the magnetoresistance is analyzed and good agreement with theoretical calculations is obtained. These results indicate that the square-root magnetoresistance in low magnetic fields can be considered as a characteristic feature of single-layer graphene with a short-range disorder.

Notes

ACKNOWLEDGMENTS

We thank I.V. Gornyi for helpful discussions.

FUNDING

G.Yu.V acknowledges the support of the Russian Science Foundation, project no. 17-72-10134.

REFERENCES

  1. 1.
    P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, et al., Phys. Rev. B 87, 165432 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, et al., Rev. Mod. Phys. 84, 1709 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    N. H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. 98, 186806 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    A. M. Goossens, V. E. Calado, A. Barreiro, et al., App. Phys. Lett. 100, 073110 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. 81, 109 (2009).ADSGoogle Scholar
  9. 9.
    S. Das Sarma, S. Adam, E. H. Hwang, et al., Rev. Mod. Phys. 83, 407 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, et al., Phys. Rev. Lett. 100, 016602 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    Y.-W. Tan Y. Zhang, K. Bolotin, et al., Phys. Rev. Lett. 99, 246803 (2007).Google Scholar
  12. 12.
    T. Stauber, N. M. R. Peres, and F. Guinea, Phys. Rev. B 76, 205423 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    N. M. R. Peres, J. Phys.: Condens. Matter 21, 323201 (2009).Google Scholar
  14. 14.
    P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, et al., Phys. Rev. Lett. 114, 156601 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, et al., Phys. Rev. B 95, 165410 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    P. S. Alekseeva, I. V. Gornyi, A. P. Dmitriev, V. Yu. Kachorovskii, and M. A. Semina, Semiconductors 51, 766 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    G. Yu. Vasileva, D. Smirnov, Yu. L. Ivanov, et al., Phys. Rev. B 93, 195430 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    G. Yu. Vasileva, P. S. Alekseev, Yu. L. Ivanov, Yu. B. Vasil’ev, D. Smirnov, H. Shmidt, R. J. Haug, F. Gouider, and G. Nachtwei, JETP Lett. 96, 471 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    Note that in strong magnetic fields, the square root magnetoresistance can be masked by Shubnikov-de Haas oscillations.Google Scholar
  20. 20.
    E. V. Kurganova, S. Wiedmann, A. J. M. Giesbers, et al., Phys. Rev. B 87, 085447 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • G. Yu. Vasileva
    • 1
    Email author
  • P. S. Alekseev
    • 1
  • Yu. B. Vasil’ev
    • 1
  • A. P. Dmitriev
    • 1
  • V. Yu. Kachorovskii
    • 1
  • D. Smirnov
    • 2
  • H. Schmidt
    • 2
  • R. Haug
    • 2
  1. 1.Ioffe Physical-Technical Institute, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Institut für Festkörperphysik, Universität HannoverHannoverGermany

Personalised recommendations