The Effective Hamiltonian Method in the Thermodynamics of Two Resonantly Interacting Quantum Oscillators
ATOMS, MOLECULES,
OPTICS
First Online:
- 20 Downloads
Abstract
We investigate the classical problem of two resonantly interacting oscillators each of which is coupled to “its own” heat bath based on the effective Hamiltonian method and the quantum stochastic differential equation (in contrast to the well-known “global” and “local” approaches). We show that in the second order of the algebraic perturbation theory, each of the oscillators turns out to be also coupled to the “foreign” heat bath. We calculate the steady-state heat flows and prove that there is no heat flow from the cold heat bath to the hot one, as evidenced by some results of the local approach.
Notes
REFERENCES
- 1.J.-P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger, and A. Georges, Science (Washington, DC, U. S.) 342, 713 (2013).ADSCrossRefGoogle Scholar
- 2.M. Brunelli, L. Fusco, R. Landig, W. Wieczorek, J. Hoelscher-Obermaier, G. Landi, F. L. Semio, A. Ferraro, N. Kiesel, T. Donner, G. De Chiara, and M. Paternostro, Phys. Rev. Lett. 121, 160604 (2018).ADSCrossRefGoogle Scholar
- 3.R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner, and T. Esslinger, Nature (London, U.K.) 532, 476 (2016).ADSCrossRefGoogle Scholar
- 4.S. Krinner, T. Esslinger, and J.-P. Brantut, J. Phys.: Condens. Matter 29, 343003 (2017).Google Scholar
- 5.M. Josefsson, A. Svilans, A. M. Burke, E. A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, and H. Linke, Nat. Nanotechnol. 13, 920 (2018).ADSCrossRefGoogle Scholar
- 6.A. Nitzan and M. A. Ratner, Science (Washington, DC, U. S.) 300, 1384 (2003).ADSCrossRefGoogle Scholar
- 7.Y. Dubi and M. di Ventra, Rev. Mod. Phys. 83, 131 (2011).ADSCrossRefGoogle Scholar
- 8.J. P. Pekola and I. M. Khaymovich, Ann. Rev. Condens. Matter Phys. (2018).Google Scholar
- 9.A. Levy and R. Kosloff, Phys. Rev. Lett. 108, 070604 (2012).ADSCrossRefGoogle Scholar
- 10.A. Roulet, S. Nimmrichter, J. M. Arrazola, S. Seah, and V. Scarani, Phys. Rev. E 95, 062131 (2017).ADSCrossRefGoogle Scholar
- 11.B. Reid, S. Pigeon, M. Antezza, and G. de Chiara, Europhys. Lett. 120, 60006 (2017).ADSCrossRefGoogle Scholar
- 12.A. Hewgill, A. Ferraro, and G. de Chiara, Phys. Rev. A 98, 042102 (2018).ADSCrossRefGoogle Scholar
- 13.S. Scopa, G. T. Landi, and D. Karevski, Phys. Rev. A 97, 062121 (2018).ADSCrossRefGoogle Scholar
- 14.E. B. Davis, Quantum Theory of Open Systems (Academic, New York, 1976).Google Scholar
- 15.R. S. Ingarden, A. Kossakowski, and M. Ohya, Information Dynamics and Open Systems: Classical and Quantum Approach (Springer, Netherlands, 1997).CrossRefGoogle Scholar
- 16.A. Joye, S. Attal, and Cl.-A. Pillet, Open Quantum Systems I. The Hamiltonian Approach (Springer, Berlin, Heidelberg, 2005).zbMATHGoogle Scholar
- 17.G. Schaller, Open Quantum Systems Far from Equilibrium (Springer Int., Cham, 2014).CrossRefGoogle Scholar
- 18.I. G. Lang and Yu. A. Firsov, Sov. Phys. JETP 16, 1301 (1962).ADSGoogle Scholar
- 19.A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).CrossRefGoogle Scholar
- 20.G. Lindblad, Commun. Math. Phys. 48, 119 (1976).ADSCrossRefGoogle Scholar
- 21.V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, Rep. Math. Phys. 13, 149 (1978).ADSMathSciNetCrossRefGoogle Scholar
- 22.N. N. Bogolyubov, V. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity (Akad. Nauk SSSR, Moscow, 1958).zbMATHGoogle Scholar
- 23.A. Levy and R. Kozloff, Europhys. Lett. 107, 20004 (2014).ADSCrossRefGoogle Scholar
- 24.A. S. Trushechkin and I. V. Volovich, Europhys. Lett. 113, 30005 (2016).CrossRefGoogle Scholar
- 25.D. F. Walls, Z. Phys. 234, 231 (1970).ADSCrossRefGoogle Scholar
- 26.C. Joshi, P. Ohberg, J. D. Cresser, and E. Andersson, Phys. Rev. A 90, 063815 (2014).ADSCrossRefGoogle Scholar
- 27.V. N. Bogaevski and A. Povzner, Algebraic Methodsin Nonlinear Perturbation Theory (Springer, Berlin, 1991).CrossRefGoogle Scholar
- 28.V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Nauka, Moscow, 1977; Springer, Berlin, Heidelberg, 1989).Google Scholar
- 29.W. H. Louissel and L. R. Walker, Phys. Rev. B 137, 204 (1965).ADSCrossRefGoogle Scholar
- 30.A. M. Basharov, Phys. Rev. A 84, 013801 (2011).ADSCrossRefGoogle Scholar
- 31.A. M. Basharov, Phys. Lett. A 376, 1881 (2012).ADSCrossRefGoogle Scholar
- 32.C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2004).zbMATHGoogle Scholar
- 33.A. M. Basharov and A. I. Trubilko, J. Exp. Theor. Phys. 128, 366 (2019).ADSCrossRefGoogle Scholar
- 34.R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93, 301 (1984).ADSCrossRefGoogle Scholar
Copyright information
© Pleiades Publishing, Inc. 2019