Journal of Experimental and Theoretical Physics

, Volume 129, Issue 3, pp 339–348 | Cite as

The Effective Hamiltonian Method in the Thermodynamics of Two Resonantly Interacting Quantum Oscillators

  • A. I. TrubilkoEmail author
  • A. M. BasharovEmail author


We investigate the classical problem of two resonantly interacting oscillators each of which is coupled to “its own” heat bath based on the effective Hamiltonian method and the quantum stochastic differential equation (in contrast to the well-known “global” and “local” approaches). We show that in the second order of the algebraic perturbation theory, each of the oscillators turns out to be also coupled to the “foreign” heat bath. We calculate the steady-state heat flows and prove that there is no heat flow from the cold heat bath to the hot one, as evidenced by some results of the local approach.



  1. 1.
    J.-P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger, and A. Georges, Science (Washington, DC, U. S.) 342, 713 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    M. Brunelli, L. Fusco, R. Landig, W. Wieczorek, J. Hoelscher-Obermaier, G. Landi, F. L. Semio, A. Ferraro, N. Kiesel, T. Donner, G. De Chiara, and M. Paternostro, Phys. Rev. Lett. 121, 160604 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner, and T. Esslinger, Nature (London, U.K.) 532, 476 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    S. Krinner, T. Esslinger, and J.-P. Brantut, J. Phys.: Condens. Matter 29, 343003 (2017).Google Scholar
  5. 5.
    M. Josefsson, A. Svilans, A. M. Burke, E. A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, and H. Linke, Nat. Nanotechnol. 13, 920 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    A. Nitzan and M. A. Ratner, Science (Washington, DC, U. S.) 300, 1384 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Dubi and M. di Ventra, Rev. Mod. Phys. 83, 131 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    J. P. Pekola and I. M. Khaymovich, Ann. Rev. Condens. Matter Phys. (2018).Google Scholar
  9. 9.
    A. Levy and R. Kosloff, Phys. Rev. Lett. 108, 070604 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    A. Roulet, S. Nimmrichter, J. M. Arrazola, S. Seah, and V. Scarani, Phys. Rev. E 95, 062131 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    B. Reid, S. Pigeon, M. Antezza, and G. de Chiara, Europhys. Lett. 120, 60006 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    A. Hewgill, A. Ferraro, and G. de Chiara, Phys. Rev. A 98, 042102 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    S. Scopa, G. T. Landi, and D. Karevski, Phys. Rev. A 97, 062121 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    E. B. Davis, Quantum Theory of Open Systems (Academic, New York, 1976).Google Scholar
  15. 15.
    R. S. Ingarden, A. Kossakowski, and M. Ohya, Information Dynamics and Open Systems: Classical and Quantum Approach (Springer, Netherlands, 1997).CrossRefGoogle Scholar
  16. 16.
    A. Joye, S. Attal, and Cl.-A. Pillet, Open Quantum Systems I. The Hamiltonian Approach (Springer, Berlin, Heidelberg, 2005).zbMATHGoogle Scholar
  17. 17.
    G. Schaller, Open Quantum Systems Far from Equilibrium (Springer Int., Cham, 2014).CrossRefGoogle Scholar
  18. 18.
    I. G. Lang and Yu. A. Firsov, Sov. Phys. JETP 16, 1301 (1962).ADSGoogle Scholar
  19. 19.
    A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).CrossRefGoogle Scholar
  20. 20.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, Rep. Math. Phys. 13, 149 (1978).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    N. N. Bogolyubov, V. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity (Akad. Nauk SSSR, Moscow, 1958).zbMATHGoogle Scholar
  23. 23.
    A. Levy and R. Kozloff, Europhys. Lett. 107, 20004 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    A. S. Trushechkin and I. V. Volovich, Europhys. Lett. 113, 30005 (2016).CrossRefGoogle Scholar
  25. 25.
    D. F. Walls, Z. Phys. 234, 231 (1970).ADSCrossRefGoogle Scholar
  26. 26.
    C. Joshi, P. Ohberg, J. D. Cresser, and E. Andersson, Phys. Rev. A 90, 063815 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    V. N. Bogaevski and A. Povzner, Algebraic Methodsin Nonlinear Perturbation Theory (Springer, Berlin, 1991).CrossRefGoogle Scholar
  28. 28.
    V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Nauka, Moscow, 1977; Springer, Berlin, Heidelberg, 1989).Google Scholar
  29. 29.
    W. H. Louissel and L. R. Walker, Phys. Rev. B 137, 204 (1965).ADSCrossRefGoogle Scholar
  30. 30.
    A. M. Basharov, Phys. Rev. A 84, 013801 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    A. M. Basharov, Phys. Lett. A 376, 1881 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2004).zbMATHGoogle Scholar
  33. 33.
    A. M. Basharov and A. I. Trubilko, J. Exp. Theor. Phys. 128, 366 (2019).ADSCrossRefGoogle Scholar
  34. 34.
    R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93, 301 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.St. Petersburg University of State Fire Service of Emercom of RussiaSt. PetersburgRussia
  2. 2.National Research Center “Kurchatov InstituteMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations