Skip to main content
Log in

Solar Cosmic Ray Acceleration by a Shock Wave in the Lower Solar Corona on November 22, 1977

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the theory of diffusive shock acceleration of charged particles, we have investigated the spectra of protons recorded in the solar cosmic ray event near the Earth’s orbit on November 22, 1977 (ground level enhancement no. 30, GLE30). The proton flux data from the CPME instrument installed on the IMP-8 spacecraft and the worldwide network of neutron monitors have been used to analyze the event. Using GLE30 as an example, we have shown for the first time that solar cosmic rays of relativistic energies can be produced by a shock wave with a relatively low speed of 560 km s–1 in the lower solar corona at a distance up to 1.6\({{R}_{ \odot }}\) (\({{R}_{ \odot }}\) is the solar radius) within 615 s. The calculated proton spectra satisfactorily reproduce the measurements in the Earth’s orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. F. Krymskii, Sov. Phys. Dokl. 22, 327 (1977).

    ADS  MathSciNet  Google Scholar 

  2. E. G. Berezhko, V. K. Elshin, G. F. Krymskii, and S. I. Petukhov, Cosmic Ray Generation by Shock Waves (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  3. E. G. Berezhko and G. F. Krymskii, Sov. Phys. Usp. 31, 27 (1988).

    Article  ADS  Google Scholar 

  4. E. G. Berezhko and S. N. Taneev, Astron. Lett. 39, 393 (2013).

    Article  ADS  Google Scholar 

  5. L. I. Miroshnichenko, Phys. Usp. 61, 323 (2018).

    Article  ADS  Google Scholar 

  6. A. S. Petukhova, I. S. Petukhov, S. I. Petukhov, and L. T. Ksenofontov, Astrophys. J. 836, 36 (2017).

    Article  ADS  Google Scholar 

  7. M. A. Lee, Astrophys. J. Suppl. Ser. 158, 38 (2005).

    Article  ADS  Google Scholar 

  8. D. V. Reames and N. Lal, Astrophys. J. 723, 750 (2010).

    ADS  Google Scholar 

  9. G. Mann, A. Klassen, H. Aurass, and H.-T. Classen, Astron. Astrophys. 400, 329 (2003).

    Article  ADS  Google Scholar 

  10. E. G. Berezhko and S. N. Taneev, Astron. Lett. 29, 530 (2003).

    Article  ADS  Google Scholar 

  11. G. P. Zank, Gang Li, and V. Florinski, J. Geophys. Res. 109, A04107 (2004).

    Article  ADS  Google Scholar 

  12. G. F. Krymskii, Geomagn. Aeron. 4, 977 (1964).

    Google Scholar 

  13. E. G. Berezhko, S. I. Petukhov, and S. N. Taneev, Astron. Lett. 24, 122 (1998).

    ADS  Google Scholar 

  14. E. G. Berezhko and S. N. Taneev, Astron. Lett. 42, 126 (2016).

    Article  ADS  Google Scholar 

  15. S. N. Taneev, S. A. Starodubtsev, and E. G. Berezhko, J. Exp. Theor. Phys. 126, 636 (2018).

    Article  ADS  Google Scholar 

  16. K. J. Trattner, E. Möbius, M. Scholer, et al., J. Geophys. Res. 99, 13389 (1994).

    Article  ADS  Google Scholar 

  17. M. Scholer, K. J. Trattner, and H. Kucharek, Astrophys. J. 395, 675 (1992).

    Article  ADS  Google Scholar 

  18. K. J. Trattner and M. Scholer, Ann. Geophys. 11, 774 (1993).

    ADS  Google Scholar 

  19. D. Caprioli and A. Spitkovsky, Astrophys. J. 783, 91 (2014).

    Article  ADS  Google Scholar 

  20. E. G. Berezhko, S. N. Taneev, and K. J. Trattner, J. Geophys. Res. 116, A07102 (2011).

    Article  ADS  Google Scholar 

  21. E. G. Berezhko, V. K. Elshin, and L. T. Ksenofontov, J. Exp. Theor. Phys. 82, 1 (1996).

    ADS  Google Scholar 

  22. M. A. Lee, J. Geophys. Res. 87, 5063 (1982).

    Article  ADS  Google Scholar 

  23. M. A. Lee, J. Geophys. Res. 88, 6109 (1983).

    Article  ADS  Google Scholar 

  24. B. E. Gordon, M. A. Lee, E. Möbius, and K. J. Trattner, J. Geophys. Res. 104, 28263 (1999).

    Article  ADS  Google Scholar 

  25. S. P. Gary and J. E. Borovsky, J. Geophys. Res. 109, A06105 (2004).

    Article  ADS  Google Scholar 

  26. T. K. Suzuki and S. Inutsuka, J. Geophys. Res. 111, A06101 (2006).

    ADS  Google Scholar 

  27. W. H. Matthaeus, D. J. Mullan, P. Dmitruk, et al., Nonlin. Proc. Geophys. 10, 93 (2003).

    Article  ADS  Google Scholar 

  28. C. T. Russell, Solar Wind, Ed. by C. P. Sonett et al., NASA SP-308 (NASA, Washington, 1972), p. 365.

  29. C.-Y. Tu and E. Marsh, Space Sci. Rev. 73, 1 (1995).

    Article  ADS  Google Scholar 

  30. E. C. Sittler, Jr. and M. Guhathakurta, Astrophys. J. 523, 812 (1999).

    Article  ADS  Google Scholar 

  31. A. J. Hundhausen, Coronal Expansion and Solar Wind (Springer, New York, 1972), Vol. 5.

    Book  Google Scholar 

  32. D. V. Reames, Space Sci. Rev. 90, 413 (1999).

    Article  ADS  Google Scholar 

  33. E. G. Berezhko, S. I. Petukhov, and S. N. Taneev, Astron. Lett. 28, 632 (2002).

    Article  ADS  Google Scholar 

  34. E. G. Berezhko, S. N. Taneev, and T. Yu. Grigor’ev, in Proceedings of the 33rd International Cosmic Ray Conference ICRC, Rio de Janeiro, Brazil, July 2–9, 2013 (2013), p. 0078. https://galprop.stanford.edu/elibrary/icrc/2013/papers/icrc2013-0078.pdf.

  35. https://umbra.nascom.nasa.gov/SEP.

  36. G. F. Krymskii, V. G. Grigoryev, S. A. Starodubtsev, and S. N. Taneev, JETP Lett. 102, 335 (2015).

    Article  ADS  Google Scholar 

  37. S. M. Krimigis, J. Geophys. Res. 70, 2943 (1965).

    Article  ADS  Google Scholar 

  38. http://sd-www.jhuapl.edu/IMP/imp_index.html.

  39. C. K. Ng, D. V. Reames, and A. J. Tylka, Astrophys. J. 591, 461 (2003). https://gle.oulu.fi. https://doi.org/10.1086/375293

    Article  ADS  Google Scholar 

  40. https://gle.oulu.fi.

  41. P. H. Stoker, Space Sci. Rev. 73, 327 (1994).

    Article  ADS  Google Scholar 

  42. G. F. Krymskii, V. G. Grigor’ev, and S. A. Starodubtsev, JETP Lett. 88, 411 (2008).

    Article  ADS  Google Scholar 

  43. M. A. Shea and D. V. Smart, in Proceedings of the 27th International Cosmic Ray Conference ICRC, Hamburg, Germany, Aug. 7–15, 2001 (2001), p. 4063.

  44. H. Debrunner, E. Flückiger, J. A. Lockwood, and R. E. McGuire, J. Geophys. Res. 89, 769 (1984).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Basic Research Program of the Siberian Branch of the Russian Academy of Sciences for 2017–2020: Program II.16.2 “Physics of Cosmic Rays and Solar–Terrestrial Relations,” Project II.16.2.2 “Origin of Cosmic Rays in Various Astrophysical Objects and Dynamics of their Distribution in Interplanetary Space,” registration number NIOKTR AAAA-A17-117021450058-6.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Taneev or S. A. Starodubtsev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taneev, S.N., Starodubtsev, S.A., Grigor’ev, V.G. et al. Solar Cosmic Ray Acceleration by a Shock Wave in the Lower Solar Corona on November 22, 1977. J. Exp. Theor. Phys. 129, 375–385 (2019). https://doi.org/10.1134/S1063776119080089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119080089

Navigation