Advertisement

Journal of Experimental and Theoretical Physics

, Volume 129, Issue 3, pp 397–403 | Cite as

Characteristics of Shock-Induced Dust Flux from the Surface of Lead and Copper Samples under Pressure in the Shock Wave of 45–50 GPa with Unloading into Vacuum

  • V. A. Ogorodnikov
  • A. L. Mikhailov
  • S. V. Erunov
  • S. A. Finyushin
  • D. E. Zotov
  • N. V. Nevmerzhitskii
  • A. I. Bystruev
  • M. A. Syrunin
  • M. V. Antipov
  • A. V. Fedorov
  • K. N. Panov
  • E. V. KulakovEmail author
  • A. A. Utenkov
  • I. V. Yurtov
  • E. A. Chudakov
  • I. V. Shmelev
  • A. O. Yagovkin
  • A. V. Chapaev
  • A. V. Romanov
  • A. V. Mishanov
  • N. B. Davydov
  • V. V. Glushikhin
  • I. A. Kalashnik
  • E. D. Sen’kovskii
  • E. V. Bodrov
  • A. V. Rudnev
  • D. N. Zamyslov
  • M. O. Lebedeva
SOLIDS AND LIQUIDS
  • 9 Downloads

Abstract

The results of experimental studies of the shock-induced particle ejection (“dusting”) from a free rough (Rz = 20) surface of lead and copper samples into an evacuated medium are presented. The experimental methods were based on different physical principles. To determine the size of particles by shadow laser-optical imaging more efficiently, a narrow strip was isolated in the center of the free surface of a sample from which an optically transparent stream of particles was ejected. The rest of the surface, substantially larger in size, ejected particles, parameters of which were reliably recorded using optical heterodyne interferometry detection, radiographic imaging, and piezoelectric techniques. This made it possible to obtain more reliable data on the particle size distribution, the velocity of the front of a particle flux, and the density (weight) distribution of the flow in the direction of its motion, necessary to refine the existing models and create more reliable models to describe the phenomenon. Using lead and copper samples, the material of which melts or does not melt under shock wave loading in selected close conditions (amplitude of the shock wave and roughness of the free surface), made it possible to clearly demonstrate the effect of melting on the qualitative pattern and quantitative characteristics of the shock-induced dusting process.

Notes

REFERENCES

  1. 1.
    J. M. Walsher, R. G. Shreffler, and F. J. Willing, J. Appl. Phys. 24, 349 (1953).ADSCrossRefGoogle Scholar
  2. 2.
    J. R. Asay and L. M. Barker, J. Appl. Phys. 45, 2540 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Ogorodnikov, A. G. Ivanov, A. L. Mikhailov, N. I. Kryukov, A. P. Tolochko, and V. A. Golubev, Fiz. Goreniya Vzryva 34, 103 (1998).Google Scholar
  4. 4.
    V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Yu. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, J. Exp. Theor. Phys. 109, 530 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    S. B. Bakhrakh, I. Yu. Bezrukova, A. D. Kovaleva, S. S. Kosarin, and O. V. Ol’khov, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsess., No. 3, 14 (2005).Google Scholar
  6. 6.
    T. Resseguier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, J. Appl. Phys. 101, 013506 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    M. B. Zellner, M. Grover, J. E. Hammerberg, R. S. Hixson, A. J. Iverson, G. S. Macrum, K. B. Morley, A. W. Obst, R. T. Olson, J. R. Payton, P. A. Rigg, N. Routley, G. D. Stevens, W. D. Turley, L. Veeser, and W. T. Buttler, J. Appl. Phys. 102, 013522 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    T. C. Germann, J. E. Hammerber, and G. Dimonte, in Proceedings of the 7th Biannual International Conference on New Models and Hydrocodesfor Shock Wave Processes in Condensed Matter, Portugal, 2008, p. 18.Google Scholar
  9. 9.
    N. V. Nevmerzhitskii, A. L. Mikhailov, V. A. Raevskii, V. S. Sasik, Yu. M. Makarov, E. A. Sotskov, and A. V. Rudnev, in Proceedings of the 13th International Conference – Kharitonov Readings, Sarov, 2011, p. 604.Google Scholar
  10. 10.
    A. B. Georgievskaya and V. A. Raevskii, in Proceedings of the 13th International Conference – Kharitonov Readings, Sarov, 2011, p. 597.Google Scholar
  11. 11.
    G. Dimonte, G. Terrones, and F. Cherne, Phys. Rev. Lett. 107, 264502 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    Yongtao Chen, Haibo Hu, Tiegang Tang, Guowu Ren, and Qingzhong Li, J. Appl. Phys. 111, 053509 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    D. M. Or’o, J. E. Hammerberg, W. T. Buttler, F. G. Mariam, C. Morris, C. Rousculp, and J. B. Stone, AIP Conf. Proc. 1426, 1351 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    D. S. Sorenson, R. M. Malone, G. A. Capelle, P. Pazuchanics, R. P. Johnson, M. L. Kaufman, A. Tibbitts, T. Tunnell, D. Marks, M. Grover, B. Marshall, G. D. Stevens, W. D. Turley, and B. LaLone, in Proceedings of the NEDPC 2013, Livermore, California, US, 2013, LA-UR-14-23036 (2013).Google Scholar
  15. 15.
    M. V. Antipov, A. B. Georgievskaya, V. V. Igonin, V. N. Knyazev, A. I. Lebedev, M. O. Lebedeva, K. N. Panov, V. A. Raevskii, V. D. Sadunov, A. A. Utenkov, and I. V. Yurtov, in Proceedings of the 15th International Conference – Kharitonov Readings, Sarov, 2013, p. 666.Google Scholar
  16. 16.
    A. V. Fedorov, A. L. Mikhailov, S. A. Finyushin, D. V. Nazarov, E. A. Chudakov, D. A. Kalashnikov, and E. I. Butusov, in Proceedings of the 15th International Conference – Kharitonov Readings, Sarov, 2013, p. 274.Google Scholar
  17. 17.
    N. V. Nevmerzhitskii, E. A. Sotskov, E. D. Sen’kovskii, S. A. Abakumov, S. V. Frolov, O. A. Krivonos, A. V. Rudnev, O. N. Aprelkov, and A. B. Georgievskaya, in Proceedings of the 15th International Conference – Kharitonov Readings, Sarov, 2013, p. 655.Google Scholar
  18. 18.
    S. K. Monfared, D. M. Or’o, M. Grover, J. E. Hammerberg, B. M. LaLone, C. L. Pack, M. M. Schauer, G. D. Stevens, J. B. Stone, W. D. Turley, and W. T. Buttler, J. Appl. Phys. 116, 063504 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    S. K. Monfared, W. T. Buttler, D. K. Frayer, M. Grover, J. E. Hammerberg, B. M. LaLone, G. D. Stevens, J. B. Stone, W. D. Turley, and M. M. Schauer, J. Appl. Phys. 117, 223105 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    A. L. Mikhailov, V. A. Ogorodnikov, V. S. Sasik, V. A. Raevskii, A. I. Lebedev, D. E. Zotov, S. V. Erunov, M. A. Syrunin, V. D. Sadunov, N. V. Nevmerzhitskii, S. A. Lobastov, V. V. Burtsev, A. V. Mishanov, E. V. Kulakov, A. V. Satarova, et al., J. Exp. Theor. Phys. 118, 785 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    V. A. Ogorodnikov, A. L. Mikhailov, V. S. Sasik, S. V. Erunov, M. A. Syrunin, A. V. Fedorov, N. V. Nevmerzhitskii, E. V. Kulakov, O. A. Kleshchevnikov, M. V. Antipov, I. V. Yurtov, A. V. Rudnev, A. V. Chapaev, A. S. Pupkov, E. D. Sen’kovskii, et al., J. Exp. Theor. Phys. 122, 357 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    V. A. Ogorodnikov, A. L. Mikhailov, S. V. Erunov, M. V. Antipov, A. V. Fedorov, M. A. Syrunin, E. V. Kulakov, O. A. Kleshchevnikov, I. V. Yurtov, A. A. Utenkov, S. A. Finyushin, E. A. Chudakov, D. A. Kalashnikov, A. S. Pupkov, A. V. Chapaev, et al., J. Exp. Theor. Phys. 125, 985 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    W. T. Buttler, S. K. Lamoreaux, R. K. Schulze, J. D. Schwarzkopf, J. C. Cooley, M. Grover, J. E. Hammerberg, B. M. La Lone, A. Llobet, R. Manzanares, J. I. Martinez, D. W. Schmidt, D. G. Sheppard, G. D. Stevens, W. D. Turley, and L. R. Veeser, J. Dyn. Behavior Mater. 3, 334 (2017).CrossRefGoogle Scholar
  24. 24.
    N. V. Nevmerzhitskii, V. A. Raevskii, E. A. Sotskov, E. D. Sen’kovskii, N. B. Davydov, E. V. Bodrov, S. V. Frolov, K. V. Anisiforov, A. B. Georgievskaya, E. V. Levkina, O. L. Krivonos, A. S. Kuchkareva, A. R. Gavrish, and B. I. Tkachenko, Combust. Explos., Shock Waves 54, 585 (2018).CrossRefGoogle Scholar
  25. 25.
    V. P. Kopyshev and A. B. Medvedev, Preprint (RFYaTs–VNIIEF, Sarov, 1995).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. A. Ogorodnikov
    • 1
  • A. L. Mikhailov
    • 1
  • S. V. Erunov
    • 1
  • S. A. Finyushin
    • 1
  • D. E. Zotov
    • 1
  • N. V. Nevmerzhitskii
    • 1
  • A. I. Bystruev
    • 1
  • M. A. Syrunin
    • 1
  • M. V. Antipov
    • 1
  • A. V. Fedorov
    • 1
  • K. N. Panov
    • 1
  • E. V. Kulakov
    • 1
    Email author
  • A. A. Utenkov
    • 1
  • I. V. Yurtov
    • 1
  • E. A. Chudakov
    • 1
  • I. V. Shmelev
    • 1
  • A. O. Yagovkin
    • 1
  • A. V. Chapaev
    • 1
  • A. V. Romanov
    • 1
  • A. V. Mishanov
    • 1
  • N. B. Davydov
    • 1
  • V. V. Glushikhin
    • 1
  • I. A. Kalashnik
    • 1
  • E. D. Sen’kovskii
    • 1
  • E. V. Bodrov
    • 1
  • A. V. Rudnev
    • 1
  • D. N. Zamyslov
    • 1
  • M. O. Lebedeva
    • 1
  1. 1.All-Russia Scientific Research Institute of Experimental PhysicsSarovRussia

Personalised recommendations