Advertisement

Journal of Experimental and Theoretical Physics

, Volume 129, Issue 3, pp 321–328 | Cite as

Nonstationary Spatial Energy Distribution of a Cascade of Knock-out Atoms in a Solid

  • E. V. MetelkinEmail author
  • V. A. Akat’ev
  • V. I. Shmyrev
  • E. Yu. Barysheva
ATOMS, MOLECULES, OPTICS
  • 21 Downloads

Abstract

We consider the evolution of a cascade of atomic collisions in a solid consisting of identical atoms. The solution to the Boltzmann kinetic equation describing a nonstationary spatial energy distribution of slowing down atoms is obtained considering their multiplication. We assume that the scattering of atoms is elastic and spherically symmetric in the center-of-mass system and that the scattering cross section is constant. Some particular cases of this solution coincide with the results obtained earlier.

Notes

REFERENCES

  1. 1.
    K. Leiman, Interaction of Radiation with Solids and Formation of Elementary Defects (Atomizdat, Moscow, 1979) [in Russian].Google Scholar
  2. 2.
    G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, Heidelberg, 2007).Google Scholar
  3. 3.
    A. I. Ryazanov and E. V. Metelkin, Radiat. Eff. Defects Solids 52, 15 (1980).CrossRefGoogle Scholar
  4. 4.
    Y. Sato, S. Kojimo, T. Yoshiie, et al., J. Nucl. Mater. 179181, 901 (1991).Google Scholar
  5. 5.
    Y. Sato, T. Yoshiie, and M. Kiritani, J. Nucl. Mater. 191194, 1101 (1992).Google Scholar
  6. 6.
    E. V. Metelkin and A. I. Ryazanov, At. Energy 83, 653 (1997).Google Scholar
  7. 7.
    E. V. Metelkin, A. I. Ryazanov, and E. V. Semenov, J. Exp. Theor. Phys. 107, 394 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    A. I. Ryazanov, E. V. Metelkin, and E. V. Semenov, J. Nucl. Mater. 386388, 132 (2009).Google Scholar
  9. 9.
    A. A. Aleksandrov, V. A. Akat’ev, E. V. Metelkin, et al., Vestn. MGTU im. N. E. Baumana, Ser.: Estestv. Nauki, No. 1, 27 (2019).Google Scholar
  10. 10.
    J. Lindhard, V. Nielsen, and M. Scharff, Mat. Fys. Medd. Dan. Vid. Selsk. 36, 1 (1968).Google Scholar
  11. 11.
    V. A. Akat’ev, E. V. Metelkin, and A. M. Savinov, At. Energy 122, 364 (2017).Google Scholar
  12. 12.
    E. V. Metelkin, M. V. Lebedeva, and A. V. Chernyaev, At. Energy 125, 208 (2018).Google Scholar
  13. 13.
    A. A. Aleksandrov, V. A. Akat’ev, E. V. Metelkin, et al., Vestn. MGTU im. N. E. Baumana, Ser.: Estestv. Nauki (2019, in press).Google Scholar
  14. 14.
    A. I. Isakov, M. V. Kazarnovskii, Yu. A. Medvedev, et al., Unsteady Neutron Moderation. Basic Patterns and Some Applications (Nauka, Moscow, 1984) [in Russian].Google Scholar
  15. 15.
    G. Bateman and A. Erdelyi, Tables of Integral Transforms (McGraw-Hill, New York, 1954), Vol. 1.Google Scholar
  16. 16.
    I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, New York, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. V. Metelkin
    • 1
    Email author
  • V. A. Akat’ev
    • 2
  • V. I. Shmyrev
    • 1
  • E. Yu. Barysheva
    • 2
  1. 1.Russian State Social UniversityMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations