Magnetic and Electronic Properties of Gd-Doped Topological Insulator Bi1.09Gd0.06Sb0.85Te3
- 66 Downloads
Abstract
The recent realization of quantum anomalous Hall effect and Majorana fermions observation enhance interest in magnetism investigation in topological insulators. In this work, the electronic and magnetic structure of the Gd-doped topological insulator Bi1.09Gd0.06Sb0.85Te3 were systematically studied by means of angle-resolved photoemission spectroscopy, resonance photoemission spectroscopy (ResPES) and SQUID magnetometry. Resonant features related to the Gd density of states near the Fermi level are experimentally observed. Study of magnetic structure showed antiferromagnetic ordered bulk at low temperatures as well as presence of hysteresis loop at elevated temperatures. Finally, possible mechanism of magnetism and its relation to observed electronic features are discussed.
Notes
ACKNOWLEDGMENTS
The studies were also carried out at the resource centers of St. Petersburg State University “Physical Methods for Surface Research” and “Diagnosis of functional materials for medicine, pharmacology and nanoelectronics”. We are grateful to the staff of the Helmholtz Center in Berlin for financial and technical support.
FUNDING
This work was supported by a research grant from the Ministry of Education and Science of the Russian Federation and St. Petersburg State University (grant no. 15.61.202.2015), by Russian Science Foundation (grant no. 18-12-00062), by Russian Foundation of Basic Researches (grant no. 17-08-00955) and by state contract of IGM SB RAS. In addition the work was supported by German-Russian Interdisciplinary Science Center (G-RISC) funded by the German Federal Foreign Office via the German Academic Exchange Service (DAAD) and Russian-German laboratory at BESSY II (Helmholtz-Zentrum Berlin).
REFERENCES
- 1.M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 4 (2010).CrossRefGoogle Scholar
- 2.Q. Xiao-Liang and Z. Shou-Cheng, Rev. Mod. Phys. 83, 4 (2011).Google Scholar
- 3.M. Z. Hasan and C. L. Kane, Phys. Rev. Lett. 95, 14 (2005).Google Scholar
- 4.F. Liang and C. L. Kane, Phys. Rev. B 76, 4 (2007).CrossRefGoogle Scholar
- 5.L. Genhua, Zh. Guanghu, and Ch. Yong-Ha, Appl. Phys. Lett. 101, 22 (2012).Google Scholar
- 6.A. Díaz-Fernández, L. Chico, J. W. González, et al., Sci. Rep. 7, 8058 (2017).ADSCrossRefGoogle Scholar
- 7.D. Hsieh, Y. Xia, D. Qian, et al., Nature (London, U.K.) 460, 1101 (2009).ADSCrossRefGoogle Scholar
- 8.Y. Zhang, Cui-Zu Chang, Ke He, et al., Appl. Phys. Lett. 97, 19 (2009).Google Scholar
- 9.Yu. Surnin, I. I. Klimovskikh, I. I. Sostina, K. A. Kokh, O. E. Tereshchenko, and A. M. Shikin, J. Exp. Theor. Phys. 126, 535 (2018).ADSCrossRefGoogle Scholar
- 10.Z. H. Zhu, G. Levy, B. Ludbrok, et al., Phys. Rev. Lett. 107, 18 (2011).Google Scholar
- 11.R. C. Hatch, B. Marco, D. Guan, et al., Phys. Rev. B 83, 24 (2011).CrossRefGoogle Scholar
- 12.M. Bianchi, D. Guan, Sh. Bao, et al., Nat. Commun. 1, 128 (2011).ADSCrossRefGoogle Scholar
- 13.M. V. Filyanina, I. I. Klimovskikh, S. V. Eremeev, A. A. Rybkina, A. G. Rybkin, E. V. Zhizhin, A. E. Petukhov, I. P. Rusinov, K. A. Kokh, E. V. Chulkov, O. E. Tereshchenko, and A. M. Shikin, Phys. Solid State 58, 779 (2016).ADSCrossRefGoogle Scholar
- 14.D. Kong, Yu. Chen, J. Judy, et al., Nat. Phys. 6, 705 (2011).Google Scholar
- 15.H. Zhang, L. Chao-Xing, Q. Xiao-Liang, et al., Nat. Nanotechnol. 5, 438 (2009).Google Scholar
- 16.Zh. Ren, A. A. Taskin, Satoshi Sasaki, et al., Phys. Rev. B 82, 241306(R) (2010).Google Scholar
- 17.Qin Liu, Chao-Xing Liu, Cenke Xu, et al., Phys. Rev. Lett. 102, 15 (2009).Google Scholar
- 18.L. Andrew Wray, Su-Yang Xu, Yuqi Xia, et al., Nat. Phys. 7, 855 (2010).CrossRefGoogle Scholar
- 19.P. P. J. Haazen, J.-B. Laloe, T. J. Nummy, et al., Appl. Phys. Lett. 10, 8 (2012).Google Scholar
- 20.Su-Yang Xu, Madhab Neupane, Chang Liu, et al., Nat. Phys. 8, 616 (2012).CrossRefGoogle Scholar
- 21.Cui-Zu Chang, Peizhe Tang, Yi-Lin Wang, et al., Science (Washington, DC, U. S.) 112, 5 (2014).Google Scholar
- 22.Cui-Zu Chang, Jinsong Zhang, Xiao Feng, et al., Science (Washington, DC, U. S.) 340, (2013).Google Scholar
- 23.Cui-Zu Chang, Weiwei Zhao, D. Y. Kim, et al., Nat. Mater. 14, 473 (2015).ADSCrossRefGoogle Scholar
- 24.M. Mogi, R. Yoshimi, A. Tsukazaki, et al., Appl. Phys. Lett. 107, 182401 (2015).ADSCrossRefGoogle Scholar
- 25.Ke He, Yayu Wang, and Qi-Kun Xue, Nat. Sci. Rev. 1, 1 (2014).CrossRefGoogle Scholar
- 26.Peng Zhang, Koichiro Yaji, Takahiro Hashimoto, et al., Science 13, 182 (2018).ADSCrossRefGoogle Scholar
- 27.A. I. Figueroa A. A. Bakera S. E. Harrison, et al., J. Magn. Magn. Mater. 422, 93 (2017).Google Scholar
- 28.S. E. Harrison, L. J. Collins-McIntyre, P. Schonherr, et al., Sci. Rep. 5, 15767 (2015).ADSCrossRefGoogle Scholar
- 29.S. E. Harrison, L. J. Collins-McIntyre, S. L. Zhang, et al., Appl. Phys. Lett. 107, 8 (2015).CrossRefGoogle Scholar
- 30.J. Jensen and A. R. Mackintosh, Rare Earth Magnetism (Clarendon, Oxford, 1991).Google Scholar
- 31.Bei Deng, Yiou Zhang, S. B. Zhang, et al., Phys. Rev. B 94, 5 (2016).Google Scholar
- 32.W. Klemm, Z. Anorg. Chem. 187, 29 (1930).Google Scholar
- 33.H. E. Nigh, S. Legvold, and F. H. Spedding, Phys. Rev. 132, 1092 (1963).ADSCrossRefGoogle Scholar
- 34.J. Kim, K. Lee, T. Takabatake, et al., Sci. Rep. 5, 10309 (2015).ADSCrossRefGoogle Scholar
- 35.S. W. Kim, S. Vrtnik, J. Dolinsek, et al., Appl. Phys. Lett. 106, 25 (2015).Google Scholar
- 36.S. Li, S. E. Harrison, Y. Huo, et al., Phys. Rev. B 102, 24 (2013).Google Scholar
- 37.R. Žitko et al., Phys. Rev. B 81, 24 (2010).Google Scholar
- 38.He Xiaoyue, Li Hui, Lan Chen, et al., Sci. Rep. 5, 8830 (2015).ADSCrossRefGoogle Scholar
- 39.J. Sanchez-Barriga, A. Varykhalov, G. Springholz, et al., Nat. Commun. 7, 10559 (2016).ADSCrossRefGoogle Scholar
- 40.M. F. Islam, C. M. Canali, A. Pertsova, et al., Phys. Rev. B 97, 15 (2018).Google Scholar
- 41.K. Kokh, S. V. Makarenko, V. A. Golyashov, et al., CrystEngComm 16, 4 (2014).CrossRefGoogle Scholar
- 42.Zeng Zhaoquan, A. Morgan Timothy, Fan Dongsheng, et al., AIP Adv. 3, 072112 (2013).ADSCrossRefGoogle Scholar
- 43.A. M. Shikin, A. A. Rybkina, and D. A. Estyunin, Sci. Rep. 8, 6544 (2018).ADSCrossRefGoogle Scholar
- 44.B. J. Kowalski et al., Acta Phys. Polon. A 91, 819 (1997).Google Scholar
- 45.N. Athanasios Chantis, T. Kotani, and M. van Schilfgaarde, Phys. Rev. B 76, 16 (2007).Google Scholar
- 46.E. Guziewicz, B. A. Orlowski, B. J. Kowalski, et al., Appl. Surf. Sci. 166, 237 (2000).ADSCrossRefGoogle Scholar
- 47.T. Hirahara, S. V. Eremeev, T. Shirasawa, et al., Nano Lett. 17, 6 (2017).CrossRefGoogle Scholar
- 48.El M. Kholdi, M. Averous, S. Charar, et al., Phys. Rev. B 49, 3 (1994).Google Scholar
- 49.A. M. Shikin, I. I. Klimovskikh, S. V. Eremeev, et al., Phys. Rev B 89, 125416 (2014).ADSCrossRefGoogle Scholar
- 50.M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).ADSCrossRefGoogle Scholar
- 51.D. K. Efimkin, V. Galitski, et al., Phys. Rev. B 89, 11 (2014).CrossRefGoogle Scholar
- 52.A. Generalov M. M. Otrokov, A. Chikina, et al., Nano Lett. 17, 2 (2017).ADSCrossRefGoogle Scholar
- 53.A. Chikina, M. Hoppner, S. Seiro, et al., Nat. Commun. 5, 3171 (2014).ADSCrossRefGoogle Scholar
- 54.Mingda Li, Cui-Zu Chang, Lijun Wu, et al., Phys. Rev. Lett. 114, 146802 (2015).ADSCrossRefGoogle Scholar