Advertisement

Journal of Experimental and Theoretical Physics

, Volume 129, Issue 3, pp 404–412 | Cite as

Magnetic and Electronic Properties of Gd-Doped Topological Insulator Bi1.09Gd0.06Sb0.85Te3

  • S. O. FilnovEmail author
  • Yu. A. Surnin
  • A. V. Koroleva
  • I. I. Klimovskikh
  • D. A. Estyunin
  • A. Yu. Varykhalov
  • K. A. Bokai
  • K. A. Kokh
  • O. E. Tereshchenko
  • V. A. Golyashov
  • E. V. Shevchenko
  • A. M. Shikin
ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • 66 Downloads

Abstract

The recent realization of quantum anomalous Hall effect and Majorana fermions observation enhance interest in magnetism investigation in topological insulators. In this work, the electronic and magnetic structure of the Gd-doped topological insulator Bi1.09Gd0.06Sb0.85Te3 were systematically studied by means of angle-resolved photoemission spectroscopy, resonance photoemission spectroscopy (ResPES) and SQUID magnetometry. Resonant features related to the Gd density of states near the Fermi level are experimentally observed. Study of magnetic structure showed antiferromagnetic ordered bulk at low temperatures as well as presence of hysteresis loop at elevated temperatures. Finally, possible mechanism of magnetism and its relation to observed electronic features are discussed.

Notes

ACKNOWLEDGMENTS

The studies were also carried out at the resource centers of St. Petersburg State University “Physical Methods for Surface Research” and “Diagnosis of functional materials for medicine, pharmacology and nanoelectronics”. We are grateful to the staff of the Helmholtz Center in Berlin for financial and technical support.

FUNDING

This work was supported by a research grant from the Ministry of Education and Science of the Russian Federation and St. Petersburg State University (grant no. 15.61.202.2015), by Russian Science Foundation (grant no. 18-12-00062), by Russian Foundation of Basic Researches (grant no. 17-08-00955) and by state contract of IGM SB RAS. In addition the work was supported by German-Russian Interdisciplinary Science Center (G-RISC) funded by the German Federal Foreign Office via the German Academic Exchange Service (DAAD) and Russian-German laboratory at BESSY II (Helmholtz-Zentrum Berlin).

REFERENCES

  1. 1.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 4 (2010).CrossRefGoogle Scholar
  2. 2.
    Q. Xiao-Liang and Z. Shou-Cheng, Rev. Mod. Phys. 83, 4 (2011).Google Scholar
  3. 3.
    M. Z. Hasan and C. L. Kane, Phys. Rev. Lett. 95, 14 (2005).Google Scholar
  4. 4.
    F. Liang and C. L. Kane, Phys. Rev. B 76, 4 (2007).CrossRefGoogle Scholar
  5. 5.
    L. Genhua, Zh. Guanghu, and Ch. Yong-Ha, Appl. Phys. Lett. 101, 22 (2012).Google Scholar
  6. 6.
    A. Díaz-Fernández, L. Chico, J. W. González, et al., Sci. Rep. 7, 8058 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    D. Hsieh, Y. Xia, D. Qian, et al., Nature (London, U.K.) 460, 1101 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Zhang, Cui-Zu Chang, Ke He, et al., Appl. Phys. Lett. 97, 19 (2009).Google Scholar
  9. 9.
    Yu. Surnin, I. I. Klimovskikh, I. I. Sostina, K. A. Kokh, O. E. Tereshchenko, and A. M. Shikin, J. Exp. Theor. Phys. 126, 535 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    Z. H. Zhu, G. Levy, B. Ludbrok, et al., Phys. Rev. Lett. 107, 18 (2011).Google Scholar
  11. 11.
    R. C. Hatch, B. Marco, D. Guan, et al., Phys. Rev. B 83, 24 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Bianchi, D. Guan, Sh. Bao, et al., Nat. Commun. 1, 128 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    M. V. Filyanina, I. I. Klimovskikh, S. V. Eremeev, A. A. Rybkina, A. G. Rybkin, E. V. Zhizhin, A. E. Petukhov, I. P. Rusinov, K. A. Kokh, E. V. Chulkov, O. E. Tereshchenko, and A. M. Shikin, Phys. Solid State 58, 779 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    D. Kong, Yu. Chen, J. Judy, et al., Nat. Phys. 6, 705 (2011).Google Scholar
  15. 15.
    H. Zhang, L. Chao-Xing, Q. Xiao-Liang, et al., Nat. Nanotechnol. 5, 438 (2009).Google Scholar
  16. 16.
    Zh. Ren, A. A. Taskin, Satoshi Sasaki, et al., Phys. Rev. B 82, 241306(R) (2010).Google Scholar
  17. 17.
    Qin Liu, Chao-Xing Liu, Cenke Xu, et al., Phys. Rev. Lett. 102, 15 (2009).Google Scholar
  18. 18.
    L. Andrew Wray, Su-Yang Xu, Yuqi Xia, et al., Nat. Phys. 7, 855 (2010).CrossRefGoogle Scholar
  19. 19.
    P. P. J. Haazen, J.-B. Laloe, T. J. Nummy, et al., Appl. Phys. Lett. 10, 8 (2012).Google Scholar
  20. 20.
    Su-Yang Xu, Madhab Neupane, Chang Liu, et al., Nat. Phys. 8, 616 (2012).CrossRefGoogle Scholar
  21. 21.
    Cui-Zu Chang, Peizhe Tang, Yi-Lin Wang, et al., Science (Washington, DC, U. S.) 112, 5 (2014).Google Scholar
  22. 22.
    Cui-Zu Chang, Jinsong Zhang, Xiao Feng, et al., Science (Washington, DC, U. S.) 340, (2013).Google Scholar
  23. 23.
    Cui-Zu Chang, Weiwei Zhao, D. Y. Kim, et al., Nat. Mater. 14, 473 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    M. Mogi, R. Yoshimi, A. Tsukazaki, et al., Appl. Phys. Lett. 107, 182401 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    Ke He, Yayu Wang, and Qi-Kun Xue, Nat. Sci. Rev. 1, 1 (2014).CrossRefGoogle Scholar
  26. 26.
    Peng Zhang, Koichiro Yaji, Takahiro Hashimoto, et al., Science 13, 182 (2018).ADSCrossRefGoogle Scholar
  27. 27.
    A. I. Figueroa A. A. Bakera S. E. Harrison, et al., J. Magn. Magn. Mater. 422, 93 (2017).Google Scholar
  28. 28.
    S. E. Harrison, L. J. Collins-McIntyre, P. Schonherr, et al., Sci. Rep. 5, 15767 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    S. E. Harrison, L. J. Collins-McIntyre, S. L. Zhang, et al., Appl. Phys. Lett. 107, 8 (2015).CrossRefGoogle Scholar
  30. 30.
    J. Jensen and A. R. Mackintosh, Rare Earth Magnetism (Clarendon, Oxford, 1991).Google Scholar
  31. 31.
    Bei Deng, Yiou Zhang, S. B. Zhang, et al., Phys. Rev. B 94, 5 (2016).Google Scholar
  32. 32.
    W. Klemm, Z. Anorg. Chem. 187, 29 (1930).Google Scholar
  33. 33.
    H. E. Nigh, S. Legvold, and F. H. Spedding, Phys. Rev. 132, 1092 (1963).ADSCrossRefGoogle Scholar
  34. 34.
    J. Kim, K. Lee, T. Takabatake, et al., Sci. Rep. 5, 10309 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    S. W. Kim, S. Vrtnik, J. Dolinsek, et al., Appl. Phys. Lett. 106, 25 (2015).Google Scholar
  36. 36.
    S. Li, S. E. Harrison, Y. Huo, et al., Phys. Rev. B 102, 24 (2013).Google Scholar
  37. 37.
    R. Žitko et al., Phys. Rev. B 81, 24 (2010).Google Scholar
  38. 38.
    He Xiaoyue, Li Hui, Lan Chen, et al., Sci. Rep. 5, 8830 (2015).ADSCrossRefGoogle Scholar
  39. 39.
    J. Sanchez-Barriga, A. Varykhalov, G. Springholz, et al., Nat. Commun. 7, 10559 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    M. F. Islam, C. M. Canali, A. Pertsova, et al., Phys. Rev. B 97, 15 (2018).Google Scholar
  41. 41.
    K. Kokh, S. V. Makarenko, V. A. Golyashov, et al., CrystEngComm 16, 4 (2014).CrossRefGoogle Scholar
  42. 42.
    Zeng Zhaoquan, A. Morgan Timothy, Fan Dongsheng, et al., AIP Adv. 3, 072112 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    A. M. Shikin, A. A. Rybkina, and D. A. Estyunin, Sci. Rep. 8, 6544 (2018).ADSCrossRefGoogle Scholar
  44. 44.
    B. J. Kowalski et al., Acta Phys. Polon. A 91, 819 (1997).Google Scholar
  45. 45.
    N. Athanasios Chantis, T. Kotani, and M. van Schilfgaarde, Phys. Rev. B 76, 16 (2007).Google Scholar
  46. 46.
    E. Guziewicz, B. A. Orlowski, B. J. Kowalski, et al., Appl. Surf. Sci. 166, 237 (2000).ADSCrossRefGoogle Scholar
  47. 47.
    T. Hirahara, S. V. Eremeev, T. Shirasawa, et al., Nano Lett. 17, 6 (2017).CrossRefGoogle Scholar
  48. 48.
    El M. Kholdi, M. Averous, S. Charar, et al., Phys. Rev. B 49, 3 (1994).Google Scholar
  49. 49.
    A. M. Shikin, I. I. Klimovskikh, S. V. Eremeev, et al., Phys. Rev B 89, 125416 (2014).ADSCrossRefGoogle Scholar
  50. 50.
    M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).ADSCrossRefGoogle Scholar
  51. 51.
    D. K. Efimkin, V. Galitski, et al., Phys. Rev. B 89, 11 (2014).CrossRefGoogle Scholar
  52. 52.
    A. Generalov M. M. Otrokov, A. Chikina, et al., Nano Lett. 17, 2 (2017).ADSCrossRefGoogle Scholar
  53. 53.
    A. Chikina, M. Hoppner, S. Seiro, et al., Nat. Commun. 5, 3171 (2014).ADSCrossRefGoogle Scholar
  54. 54.
    Mingda Li, Cui-Zu Chang, Lijun Wu, et al., Phys. Rev. Lett. 114, 146802 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. O. Filnov
    • 1
    Email author
  • Yu. A. Surnin
    • 1
  • A. V. Koroleva
    • 1
  • I. I. Klimovskikh
    • 1
  • D. A. Estyunin
    • 1
  • A. Yu. Varykhalov
    • 2
  • K. A. Bokai
    • 1
  • K. A. Kokh
    • 1
    • 3
    • 4
  • O. E. Tereshchenko
    • 1
    • 3
    • 5
  • V. A. Golyashov
    • 1
    • 3
    • 5
  • E. V. Shevchenko
    • 1
  • A. M. Shikin
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Helmholtz-Zentrum Berlin fur Materialien und Energie, Elektronenspeicherring BESSY IIBerlinGermany
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  5. 5.Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations