Advertisement

Journal of Experimental and Theoretical Physics

, Volume 129, Issue 3, pp 391–396 | Cite as

Diffusion of Ag, Sn, and Pb over Atomically Clean Ge(111) Surface

  • A. E. DolbakEmail author
  • R. A. Zhachuk
SOLIDS AND LIQUIDS
  • 18 Downloads

Abstract

Auger electron spectroscopy and low-energy electron diffraction were used to study the diffusion of Ag, Sn, and Pb over the Ge (111) surface. The mechanisms of diffusion of atoms of these elements over the Ge(111) surface are determined, and the temperature dependences of the diffusion coefficients are measured. The parameters of diffusion of these elements over the Ge(111) and Si (111) surfaces are compared.

Notes

REFERENCES

  1. 1.
    Yu. L. Gavrilyuk and V. G. Lifshits, Poverkhnost’ 4, 82 (1983).Google Scholar
  2. 2.
    P. Sobotik, I. Ostadal, P. Kocan, et al., Czechosl. J. Phys. 53, 69 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    A. E. Dolbak and B. Z. Ol’shanetskii, J. Exp. Theor. Phys. 116, 952 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    A. E. Dolbak and B. Z. Olshanetsky, Central Eur. J. Phys. 4, 310 (2006).ADSGoogle Scholar
  5. 5.
    A. E. Dolbak, R. A. Zhachuk, and B. Z. Olshanetsky, Centr. Eur. J. Phys. 2, 254 (2004).ADSGoogle Scholar
  6. 6.
    I. Brihuega, M. M. Ugeda, and J. M. Gomez-Rodriguez, Phys. Rev. B 76, 035422 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    A. E. Dolbak and B. Z. Olshanetsky, Phys. Solid State 52, 1293 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    A. E. Dolbak, R. A. Zhachuk, and B. Z. Olshanetsky, Centr. Eur. J. Phys. 3, 263 (2003).Google Scholar
  9. 9.
    K. A. Schultz and E. G. Seebauer, J. Chem. Phys. 97, 6958 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    I. I. Suni and E. G. Seebauer, J. Chem. Phys. 100, 6772 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    E. Sulida and M. Henzler, J. Phys. C 16, 1543 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    J. A. Venables, R. Persaud, F. L. Metcalfe, et al., J. Phys. Chem. Solids 55, 955 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    F. L. Metcalfe and J. A. Venables, Mater. Res. Soc. Symp. Proc. 280, 55 (1992).CrossRefGoogle Scholar
  14. 14.
    E. Ganz, S. K. Theiss, I.-S. Hwang, et al., Phys. Rev. Lett. 68, 1567 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Luniakov, Solid State Phenom. 213, 12 (2014).CrossRefGoogle Scholar
  16. 16.
    R. J. Wilson and S. Chiang, Phys. Rev. Lett. 58, 369 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    D. Grozea, E. Bengu, C. Collazo-Davilla, et al., Surf. Rev. Lett. 6, 1061 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    Feng-Chuan Chuang, Chia-Hsiu Hsu, Cai-Zhuang Wang, et al., Phys. Rev. B 78, 245418 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    D. J. Spence and S. P. Tear, Surf. Sci. 398, 91 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    M. Padovani, E. Magnano, G. Bertoni, et al., Appl. Surf. Sci. 212–213, 213 (2003).Google Scholar
  21. 21.
    H. M. Zhang and R. I. G. Uhrberg, Appl. Surf. Sci. 212–213, 353 (2003).Google Scholar
  22. 22.
    K. Sakamoto, H. Ashima, H. M. Zhang, et al., Phys. Rev. B 65, 045305 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Borensztein, R. Alameh, T. Lopez-Rios, et al., Vacuum 41, 684 (1990).ADSCrossRefGoogle Scholar
  24. 24.
    F. L. Metcalfe and J. A. Venables, Surf. Sci. 369, 99 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    L. Ottaviano, M. Crivellari, L. Lozzi, et al., Surf. Sci. 445, L41 (2000).CrossRefGoogle Scholar
  26. 26.
    A. Goldoni and S. Modesti, Phys. Rev. Lett. 79, 3266 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    S. Stepanovsky, M. Yakes, V. Yeh, et al., Surf. Sci. 600, 1417 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    K. Horikoshi, X. Tong, T. Nagao, et al., Phys. Rev. B 60, 13287 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    J. M. Carpinelli, H. H. Weitering, E. W. Plummer, et al., Nature (London, U.K.) 381, 398 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    P. W. Palmberg, G. E. Riach, R. E. Weber, et al., Handbook of Auger Electron Spectroscopy (Phys. Elek. Ind. Inc., Minnesota, 1976).Google Scholar
  31. 31.
    H. Bracht, N. A. Stolwijk, and H. Mehrer, Phys. Rev. B 43, 14465 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    D. Grozea, E. Bengu, and L. D. Marks, Surf. Sci. 461, 23 (2000).ADSCrossRefGoogle Scholar
  33. 33.
    T. Ichikawa, Surf. Sci. 140, 37 (1984).ADSCrossRefGoogle Scholar
  34. 34.
    M. F. Reedijk, J. Arsic, F. K. de Theije, et al., Phys. Rev. B 64, 033403 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    P. E. J. Eriksson, J. R. Osiecki, K. Sakamoto, et al., Phys. Rev. B 81, 235410 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    Y. Sato, S. Chiang, and N. C. Bartelt, Phys. Rev. Lett. 99, 096103 (2007).ADSCrossRefGoogle Scholar
  37. 37.
    Y. Ohtsubo, H. Muto, K. Yaji, et al., J. Phys.: Condens. Matter 23, 435001 (2011).Google Scholar
  38. 38.
    M. Hupalo, T. L. Chan, C. Z. Wang, et al., Phys. Rev. B 66, 161410 (2002).ADSCrossRefGoogle Scholar
  39. 39.
    S. A. de Vries, P. Goedtkindt, P. Steadman, et al., Phys. Rev. B 59, 13301 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations