Ultrasonic Determination of the Jahn–Teller Effect Parameters in Impurity-Containing Crystals

  • N. S. Averkiev
  • I. B. Bersuker
  • V. V. GudkovEmail author
  • I. V. Zhevstovskikh
  • M. N. Sarychev
  • S. Zherlitsyn
  • S. Yasin
  • Yu. V. Korostelin
  • V. T. Surikov


A method is developed to determine the symmetry properties of strains and the type of Jahn–Teller effect in crystals with impurity ions in a triply degenerate electronic T state. This method is based on a calculation of the isothermal contribution of the impurity subsystem to the elastic moduli of a crystal and the absorption and velocity of normal modes for all three possible problems, namely, Te, Tt2, and T ⊗ (e + t2). The calculation results are compared with experimental data. The efficiency of the method is demonstrated for a CdSe:Cr2+ crystal. The CrSe4 center is found to be described in terms of the problem Te. The parameters of the ground-state adiabatic potential are determined.



This work was supported by HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL); the Russian Foundation for Basic Research (project no. 18-02-00332a; and the Radiation and Nuclear Technologies Superiority Center of Ural Federal University; and the state assignment of the Ministry of Education and Science of the Russian Federation (theme “Electron” no. АААА-А18-118020190098-5).


This work was based on our report for the XXXVIII Conference on Low-Temperature Physics (NT-38).


  1. 1.
    V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, Phys. Status Solidi B 247, 1553 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    E. Malguth, A. Malguth, and M. R. Phillips, Phys. Status Solidi B 245, 455 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin, Nat. Phys. 6, 602 (2010).CrossRefGoogle Scholar
  4. 4.
    I. B. Bersuker, The Jahn–Teller Effect (Cambridge Univ. Press, Cambridge, 2006).CrossRefGoogle Scholar
  5. 5.
    I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in Molecules and Crystals (Springer, Heidelberg, 1989).CrossRefGoogle Scholar
  6. 6.
    G. Bevilacqua, L. Martinelli, E. E. Vogel, and O. Mualin, Phys. Rev. B 70, 075206 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    M. M. Zaripov, V. F. Tarasov, V. F. Ulanov, and G. S. Shakurov, Phys. Solid State 44, 2050 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    M. D. Sturge, in Solid State Physics: Advances in Research and Applications, Ed. by F. Seitz, D. Tumbull, and H. Ehrenreich (Academic, New York, 1967), Vol. 20, p. 92.Google Scholar
  9. 9.
    V. V. Gudkov, I. B. Bersuker, I. V. Zhevstovskikh, Yu. V. Korostelin, and A. I. Landmann, J. Phys.: Condens. Matter 23, 115402 (2011).ADSGoogle Scholar
  10. 10.
    I. V. Zhevstovskikh, I. B. Bersuker, V. V. Gudkov, N. S. Averkiev, M. N. Sarychev, S. Zherlitsyn, Sh. Yasin, G. S. Shakurov, V. A. Ulanov, and V. T. Surikov, J. Appl. Phys. 119, 225108 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    N. S. Averkiev, I. B. Bersuker, V. V. Gudkov, K. A. Baryshnikov, I. V. Zhevstovskikh, V. Yu. Mayakin, A. M. Monakhov, M. N. Sarychev, V. E. Sedov, and V. T. Surikov, J. Appl. Phys. 116, 103708 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    N. S. Averkiev, I. B. Bersuker, V. V. Gudkov, K. A. Baryshnikov, G. V. Colibaba, I. V. Zhevstovskikh, V. Yu. Mayakin, A. M. Monakhov, D. D. Nedeoglo, M. N. Sarychev, and V. T. Surikov, Phys. Status Solidi B 251, 1590 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, and Y. K. Skasyrsky, Opt. Mater. 31, 1888 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    Acoustic Crystals, The Handbook, Ed. by M. P. Shaskol’skaya (Nauka, Moscow, 1982), p. 205 [in Russian].Google Scholar
  15. 15.
    V. V. Gudkov and J. D. Gavenda, in Magnetoacoustic Polarization Phenomena in Solids (Springer, New York, 2000), p. 25.CrossRefGoogle Scholar
  16. 16.
    S. Zherlitsyn, S. Yasin, J. Wosnitza, A. A. Svyagin, A. V. Andreev, and V. Tsurkan, Low Temp. Phys. 40, 123 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    V. V. Gudkov, in The Jahn–Teller Effect. Fundamentals and Implications for Physics and Chemistry, Ed. by H. Koppel, D. R. Yarkony, and H. Barentzen (Springer, Heidelberg, Dordrecht, London, New York, 2009), p. 743.Google Scholar
  18. 18.
    V. V. Gudkov and I. B. Bersuker, in Vibronic Interaction and the Jahn–Teller Effect. Theory and Applications, Ed. by M. Atanasov, C. Daul, and Ph. L. W. Tregenna-Piggot (Springer, Dordrecht, 2012), p. 149.Google Scholar
  19. 19.
    Y. P. Varshni, Phys. Rev. B 2, 3952 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    N. S. Averkiev, I. B. Bersuker, V. V. Gudkov, I. V. Zhevstovskikh, M. N. Sarychev, S. Zherlitsyn, S. Yasin, G. S. Shakurov, V. A. Ulanov, and V. T. Surikov, J. Phys. Soc. Jpn. 86, 114604 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    N. S. Averkiev, I. B. Bersuker, V. V. Gudkov, I. V. Zhevstovskikh, K. A. Baryshnikov, M. N. Sarychev, S. Zherlitsyn, S. Yasin, and Yu. V. Korostelin, Phys. Rev. B 96, 094431 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • N. S. Averkiev
    • 1
  • I. B. Bersuker
    • 2
  • V. V. Gudkov
    • 3
    Email author
  • I. V. Zhevstovskikh
    • 3
    • 4
  • M. N. Sarychev
    • 3
  • S. Zherlitsyn
    • 5
  • S. Yasin
    • 5
  • Yu. V. Korostelin
    • 6
  • V. T. Surikov
    • 7
  1. 1.Ioffe Physical–Technical Institute, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute for Theoretical Chemistry, University of Texas at AustinAustinUnited States
  3. 3.Ural Federal UniversityYekaterinburgRussia
  4. 4.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  5. 5.Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  6. 6.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  7. 7.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations