Advertisement

The Complexity Classes of Angular Diagrams of the Metal Conductivity in Strong Magnetic Fields

  • A. Ya. MaltsevEmail author
ELECTRONIC PROPERTIES OF SOLID
  • 17 Downloads

Abstract

We consider angular diagrams describing the dependence of the magnetic conductivity of metals on the direction of the magnetic field in rather strong fields. As it can be shown, all angular conductivity diagrams can be divided into a finite number of classes with different complexities. The greatest interest among such diagrams is represented by diagrams with the maximal complexity, which can occur for metals with rather complicated Fermi surfaces. In describing the structure of complex diagrams, in addition to the description of the conductivity itself, the description of the Hall conductivity for different directions of the magnetic field plays very important role. For the evaluation of the complexity of angular diagrams of the conductivity of metals, it is also convenient to compare such diagrams with the full mathematical diagrams that are defined (formally) for the entire dispersion relation.

Notes

FUNDING

The study was carried out at the expense of a grant from the Russian Science Foundation (project no. 18-11-00316).

REFERENCES

  1. 1.
    C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).zbMATHGoogle Scholar
  2. 2.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972).CrossRefzbMATHGoogle Scholar
  3. 3.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier Science, Oxford, UK, 1988).Google Scholar
  4. 4.
    I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Sov. Phys. JETP 4, 41 (1957).Google Scholar
  5. 5.
    I. M. Lifshitz and V. G. Peschansky, Sov. Phys. JETP 8, 875 (1959).Google Scholar
  6. 6.
    I. M. Lifshitz and V. G. Peschansky, Sov. Phys. JETP 11, 131 (1960).Google Scholar
  7. 7.
    I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 2, 831 (1960).ADSCrossRefGoogle Scholar
  8. 8.
    I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 5, 878 (1963).ADSCrossRefGoogle Scholar
  9. 9.
    I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 8, 805 (1966).ADSCrossRefGoogle Scholar
  10. 10.
    I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, New York, 1973).Google Scholar
  11. 11.
    Conductivity Electrons, Ed. by M. I. Kaganov and V. S. Edelman (Nauka, Moscow, 1985) [in Russian].Google Scholar
  12. 12.
    M. I. Kaganov and V. G. Peschansky, Phys. Rep. 372, 445 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    S. P. Novikov, Russ. Math. Surv. 37, 1 (1982).CrossRefGoogle Scholar
  14. 14.
    A. V. Zorich, Russ. Math. Surv. 39, 287 (1984).CrossRefGoogle Scholar
  15. 15.
    I. A. Dynnikov, Russ. Math. Surv. 47, 172 (1992).MathSciNetCrossRefGoogle Scholar
  16. 16.
    I. A. Dynnikov, Math. Notes 53, 495 (1993).MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. P. Novikov and A. Y. Maltsev, JETP Lett. 63, 855 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    S. P. Novikov and A. Y. Maltsev, Phys. Usp. 41, 231 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    S. P. Tsarev, private commun. (1992–1993).Google Scholar
  20. 20.
    I. A. Dynnikov, in Solitons, Geometry, and Topology: on the Crossroad, Vol. 179 of Am. Math. Soc. Translations, Ser. 2 (Am. Math. Soc., Providence, RI, 1997), p. 45.Google Scholar
  21. 21.
    A. Y. Maltsev, J. Exp. Theor. Phys. 85, 934 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    A. Ya. Maltsev and S. P. Novikov, Proc. Steklov Inst. Math. 302, 279 (2018); arXiv:1805.05210Google Scholar
  23. 23.
    I. A. Dynnikov, Russ. Math. Surv. 54, 21 (1999).MathSciNetCrossRefGoogle Scholar
  24. 24.
    I. A. Dynnikov, in Proceedings of the 2nd International Electronic Conference on Materials ECM2, Budapest, Hungary, July 22–26, 1996.Google Scholar
  25. 25.
    I. A. Dynnikov and A. Ya. Maltsev, J. Exp. Theor. Phys. 85, 205 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    A. Ya. Maltsev and S. P. Novikov, Bull. Braz. Math. Soc., New Ser. 34, 171 (2003).Google Scholar
  27. 27.
    A. Ya. Maltsev and S. P. Novikov, J. Stat. Phys. 115, 31 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    A. Ya. Maltsev and S. P. Novikov, arXiv:cond-mat/0304471Google Scholar
  29. 29.
    R. de Leo, Phys. B (Amsterdam, Neth.) 362, 6275 (2005).Google Scholar
  30. 30.
    A. Ya. Maltsev, J. Exp. Theor. Phys. 124, 805 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    A. Ya. Maltsev, J. Exp. Theor. Phys. 125, 896 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    A. Ya. Maltsev, J. Exp. Theor. Phys. 127, 1087 (2018); arXiv:1804.10762.Google Scholar
  33. 33.
    A. V. Zorich, in Proceedings of the Conference on Geometric Study of Foliations, Tokyo, November 1993, Ed. by T. Mizutani et al. (World Scientific, Singapore, 1994), p. 479.Google Scholar
  34. 34.
    A. V. Zorich, Ann. Inst. Fourier 46, 325 (1996).MathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Zorich, in Solitons, Geometry, and Topology: On the Crossroad, Ed. by V. M. Buchstaber and S. P. Novikov, Vol. 179 of Am. Math. Soc. Translations, Ser. 2 (Am. Math. Soc., Providence, RI, 1997), p. 173.Google Scholar
  36. 36.
    A. Zorich, in Pseudoperiodic Topology, Ed. by V. I. Arnold, M. Kontsevich, and A. Zorich, Vol. 197 of Am. Math. Soc. Translations, Ser. 2 (Am. Math. Soc., Providence, RI, 1999), p. 135.Google Scholar
  37. 37.
    R. de Leo, Russ. Math. Surv. 55, 166 (2000).MathSciNetCrossRefGoogle Scholar
  38. 38.
    R. de Leo, Russ. Math. Surv. 58, 1042 (2003).MathSciNetCrossRefGoogle Scholar
  39. 39.
    R. de Leo, Exp. Math. 15, 109 (2006).CrossRefGoogle Scholar
  40. 40.
    A. Zorich, in Frontiers in Number Theory, Physics and Geometry, Vol. 1: On Random Matrices, Zeta Functions and Dynamical Systems, Proceedings of the Ecole de physique des Houches, France, March 9–21, 2003, Ed. by P. Cartier, B. Julia, P. Moussa, and P. Vanhove (Springer, Berlin, 2006), p. 439.Google Scholar
  41. 41.
    R. de Leo and I. A. Dynnikov, Russ. Math. Surv. 62, 990 (2007).CrossRefGoogle Scholar
  42. 42.
    R. de Leo and I. A. Dynnikov, Geom. Dedic. 138, 51 (2009).CrossRefGoogle Scholar
  43. 43.
    A. Skripchenko, Discrete Contin. Dyn. Sys. 32, 643 (2012).MathSciNetGoogle Scholar
  44. 44.
    A. Skripchenko, Ann. Glob. Anal. Geom. 43, 253 (2013).MathSciNetCrossRefGoogle Scholar
  45. 45.
    I. Dynnikov and A. Skripchenko, in Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012–2014, Ed. V. M. Buchstaber, B. A. Dubrovin, and I. M. Krichever, Vol. 234 of Am. Math. Soc. Translations, Ser. 2 (Am. Math. Soc., Providence, RI, 2014), p. 173; arXiv: 1309.4884Google Scholar
  46. 46.
    I. Dynnikov and A. Skripchenko, Trans. Moscow Math. Soc. 76, 287 (2015).CrossRefGoogle Scholar
  47. 47.
    A. Avila, P. Hubert, and A. Skripchenko, Invent. Math. 206, 109 (2016).ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    A. Avila, P. Hubert, and A. Skripchenko, Bull. Soc. Math. Fr. 144, 539 (2016).CrossRefGoogle Scholar
  49. 49.
    R. de Leo, arXiv:1711.01716.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia

Personalised recommendations