Advertisement

Ionic Currents in a Flat Membrane

  • V. G. KamenskiiEmail author
STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS

Abstract

The ionic currents passing through the membranes forming the surface of a cell play an important role in the behavior of biological objects. The behavior of a flat membrane in an electrolyte is considered in terms of the electrodiffusion model. It is shown that an instability leading to the development of ionic currents in a cell can emerge under the action of membrane protein density fluctuations, an external potential, or electrolyte ion concentrations. A long-wavelength mode describing the change in electrolyte ion concentrations along the membrane has been found. The instability thresholds have been determined. The influence of membrane surface charges on the instability thresholds has been studied.

Notes

ACKNOWLEDGMENTS

This work was supported in part by the Basic Research Program of the Presidium of the Russian Academy of Sciences “Topical Problems of Low-Temperature Physics.”

REFERENCES

  1. 1.
    B. Fontaine and J. P. Changeux, J. Cell Biol. 108, 1025 (1989).CrossRefGoogle Scholar
  2. 2.
    F. M. Harold and J. H. Caldwell, Tip Grows in Plantand Fungal Cells (Academic, New York, USA, 1990).Google Scholar
  3. 3.
    R. Larter and P. Ortoleva, J. Theor. Biol. 96, 175 (1982).CrossRefGoogle Scholar
  4. 4.
    L. F. Jaffe, K. R. Robinson, and R. Nuccitelli, Ann. N.Y. Acad. Sci. 9, 372 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    K. Toko, H. Chosa, and K. Yamafuji, J. Theor. Biol. 114, 127 (1985).CrossRefGoogle Scholar
  6. 6.
    P. Fromherz and B. Kaiser, Europhys. Lett. 15, 313 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    P. Fromherz and W. Zimmermann, Phys. Rev. E 51, R1659 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    M. Leonetti and E. Dubois-Violette, Phys. Rev. E 56, 4521 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    M. Leonetti and E. Dubois-Violette, Phys. Rev. Lett. 81, 1977 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    C. L. Gardner, J. W. Jerome, and R. S. Eisenberg, J. Theor. Biol. 219, 291 (2002).CrossRefGoogle Scholar
  11. 11.
    I. D. Kosinska, I. Goychuk, M. Kostur, G. Schmid, and P. Hanggi, Phys. Rev. E 77, 031131 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    V. Yu. Kiselev, M. Leda, A. I. Lobanov, D. Marenduzzo, and A. B. Goryachev, J. Chem. Phys. 135, 155103 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    Y. C. Zhou, J. Chem. Phys. 136, 205103 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    M. A. Wilson, T. H. Nguyen, and A. Pohorille, J. Chem. Phys. 141, 22D519 (2014).Google Scholar
  15. 15.
    Cartailler, Z. Schuss, and D. Holcman, Sci. Rep. 7, 11269 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Kapitza Institute for Physical Problems, Russian Academy of SciencesMoscowRussia

Personalised recommendations