Skip to main content
Log in

Ionic Currents in a Flat Membrane

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The ionic currents passing through the membranes forming the surface of a cell play an important role in the behavior of biological objects. The behavior of a flat membrane in an electrolyte is considered in terms of the electrodiffusion model. It is shown that an instability leading to the development of ionic currents in a cell can emerge under the action of membrane protein density fluctuations, an external potential, or electrolyte ion concentrations. A long-wavelength mode describing the change in electrolyte ion concentrations along the membrane has been found. The instability thresholds have been determined. The influence of membrane surface charges on the instability thresholds has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. B. Fontaine and J. P. Changeux, J. Cell Biol. 108, 1025 (1989).

    Article  Google Scholar 

  2. F. M. Harold and J. H. Caldwell, Tip Grows in Plantand Fungal Cells (Academic, New York, USA, 1990).

    Google Scholar 

  3. R. Larter and P. Ortoleva, J. Theor. Biol. 96, 175 (1982).

    Article  Google Scholar 

  4. L. F. Jaffe, K. R. Robinson, and R. Nuccitelli, Ann. N.Y. Acad. Sci. 9, 372 (1974).

    Article  ADS  Google Scholar 

  5. K. Toko, H. Chosa, and K. Yamafuji, J. Theor. Biol. 114, 127 (1985).

    Article  Google Scholar 

  6. P. Fromherz and B. Kaiser, Europhys. Lett. 15, 313 (1991).

    Article  ADS  Google Scholar 

  7. P. Fromherz and W. Zimmermann, Phys. Rev. E 51, R1659 (1995).

    Article  ADS  Google Scholar 

  8. M. Leonetti and E. Dubois-Violette, Phys. Rev. E 56, 4521 (1997).

    Article  ADS  Google Scholar 

  9. M. Leonetti and E. Dubois-Violette, Phys. Rev. Lett. 81, 1977 (1998).

    Article  ADS  Google Scholar 

  10. C. L. Gardner, J. W. Jerome, and R. S. Eisenberg, J. Theor. Biol. 219, 291 (2002).

    Article  Google Scholar 

  11. I. D. Kosinska, I. Goychuk, M. Kostur, G. Schmid, and P. Hanggi, Phys. Rev. E 77, 031131 (2008).

    Article  ADS  Google Scholar 

  12. V. Yu. Kiselev, M. Leda, A. I. Lobanov, D. Marenduzzo, and A. B. Goryachev, J. Chem. Phys. 135, 155103 (2011).

    Article  ADS  Google Scholar 

  13. Y. C. Zhou, J. Chem. Phys. 136, 205103 (2012).

    Article  ADS  Google Scholar 

  14. M. A. Wilson, T. H. Nguyen, and A. Pohorille, J. Chem. Phys. 141, 22D519 (2014).

  15. Cartailler, Z. Schuss, and D. Holcman, Sci. Rep. 7, 11269 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the Basic Research Program of the Presidium of the Russian Academy of Sciences “Topical Problems of Low-Temperature Physics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kamenskii.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenskii, V.G. Ionic Currents in a Flat Membrane. J. Exp. Theor. Phys. 128, 489–493 (2019). https://doi.org/10.1134/S1063776119020080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119020080

Navigation