Advertisement

Journal of Experimental and Theoretical Physics

, Volume 128, Issue 2, pp 303–311 | Cite as

XAFS Spectroscopy Study of Microstructure and Electronic Structure of Heterosystems Containing Si/GeMn Quantum Dots

  • S. B. ErenburgEmail author
  • S. V. Trubina
  • V. A. Zvereva
  • V. A. Zinoviev
  • A. V. Katsyuba
  • A. V. Dvurechenskii
  • K. Kvashnina
  • M. Voelskow
ELECTRONIC PROPERTIES OF SOLID
  • 21 Downloads

Abstract

Using X-ray absorption near edge structure spectroscopy, extended X-ray absorption fine structure spectroscopy, atomic force microscopy, and Rutherford backscattering spectroscopy, the features of the microstructure and elemental composition of Si/GeMn magnetic systems obtained by molecular beam epitaxy and containing quantum dots are studied. Intense mixing of Ge and Si atoms is found in all samples. The degree of mixing (diffusion) correlates with the conditions of synthesis of Si/GeMn samples. For these systems, direct contacts of germanium atoms with manganese atoms are characterized and the presence of interstitial manganese with tetrahedral coordination and substitution of manganese for germanium and silicon in the lattice sites is found. The presence of stoichiometric phases Ge8Mn11, Ge3Mn5 is not detected. The correlations of the Ge, Si, and Mn coordination numbers in the Ge environment are determined both with the Mn flux value (evaporator temperature) and with the temperature at which quantum dots are grown, as well as with other synthesis conditions. The manganese concentration in the samples is determined.

Notes

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foundation for Basic Research (grant nos. 16-02-00175_a (XAFS spectroscopy study), 16-02-00397_a (Synthesis of structures)).

REFERENCES

  1. 1.
    G. Busch, P. Junod, and P. Wachter, Phys. Lett. 12, 11 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    I. I. Lyapilin and I. M. Tsidil’kovskii, Sov. Phys. Usp. 28, 349 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    S. G. Ovchinnikov, Phase Trans. 36, 15 (1991).CrossRefGoogle Scholar
  4. 4.
    F. Xiu, Y. Wang, J. Kim, A. Hong, J. Tang, A. P. Jacob, J. Zou, and K. L. Wang, Nat. Mater. 9, 337 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    J. Kassim, C. Nolph, M. Jamet, P. Reinke, and J. Floro, J. Appl. Phys. 113, 073910 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, Ed. by D. C. Koninsberger and R. Prins (Wiley, New York, 1988).Google Scholar
  7. 7.
    D. I. Kochubei, Yu. A. Babanov, K. I. Zamaraev, L. N. Mazalov, et al., X-Ray Spectral Method for Studying the Structure of Amorphous Bodies: EHAPS Spectroscopy (Nauka, Novosibirsk, 1988) [in Russian].Google Scholar
  8. 8.
    A. V. Kolobov, H. Oyanagi, K. Brunner, and K. Tanaka, Appl. Phys. Lett. 78, 451 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Kolobov, H. Oyanagi, Sh. Wei, K. Brunner, G. Abstreiter, and K. Tanaka, Phys. Rev. B 66, 075319 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Kolobov, H. Oyanagi, A. Frenkel, I. Robinson, J. Cross, Sh. Wei, K. Brunner, G. Abstreiter, Y. Maeda, A. Shklyaev, M. Ichikawa, S. Yamasaki, and K. Tanaka, Nucl. Instrum. Methods Phys. Res., Sect. B 199, 174 (2003).Google Scholar
  11. 11.
    F. Boscherini, G. Capellini, L. di Gaspare, F. Rosei, N. Motta, and S. Mobilio, Appl. Phys. Lett. 76, 682 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    A. Karatutlu, W. R. Little, A. V. Sapelkin, A. Dent, F. Mosselmans, G. Cibin, and R. Taylor, J. Phys.: Conf. Ser. 430, 012026 (2013).Google Scholar
  13. 13.
    Yu. Zhang, O. Ersoy, A. Karatutlu, W. Little, and A. Sapelkin, J. Synchrotr. Rad. 23, 253 (2016).Google Scholar
  14. 14.
    S. Erenburg, N. Bausk, L. Mazalov, A. Nikiforov, and A. Yakimov, J. Synchrotr. Rad. 10, 380 (2003).Google Scholar
  15. 15.
    S. B. Erenburg, N. V. Bausk, L. N. Mazalov, A. I. Nikiforov, and A. I. Yakimov, Phys. Scr. 115, 439 (2005).CrossRefGoogle Scholar
  16. 16.
    T. Nie, X. Kou, J. Tang, Y. Fan, S. Lee, Q. He, Li-Te Cgang, K. Murata, Y. Gen, and K. L. Wang, Nanoscale 9, 3086 (2017).CrossRefGoogle Scholar
  17. 17.
    M. Aouassa, I. Jadi, A. Bandyopadhyay, S. K. Kim, I. Karaman, and J. Y. Lee, Appl. Surf. Sci. 397, 40 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    I. T. Yoon, C. J. Park, S. W. Lee, T. W. Kang, D. W. Koh, and D. J. Fu, Solid State Electron. 52, 871 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    R. Gunnella, N. Pinto, L. Morresi, M. Abbas, and A. di Cicco, J. Non-Cryst. Sol. 354, 4193 (2008).Google Scholar
  20. 20.
    K. V. Klementiev, VIPER for Windows, freeware.Google Scholar
  21. 21.
    N. Binsted, EXCURV 98: CCLRC Daresbury Laboratory Computer Program (1998).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. B. Erenburg
    • 1
    • 2
    Email author
  • S. V. Trubina
    • 1
  • V. A. Zvereva
    • 1
  • V. A. Zinoviev
    • 3
  • A. V. Katsyuba
    • 3
  • A. V. Dvurechenskii
    • 3
  • K. Kvashnina
    • 4
    • 5
  • M. Voelskow
    • 6
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  4. 4.Rossendorf Beamline at the ESRFGrenobleFrance
  5. 5.Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource EcologyDresdenGermany
  6. 6.Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials ResearchDresdenGermany

Personalised recommendations