Advertisement

Journal of Experimental and Theoretical Physics

, Volume 128, Issue 2, pp 297–302 | Cite as

Inelastic Neutron Scattering As an Indication of a New Type of Gapped Surface Excitations in Liquid He

  • P. D. GrigorievEmail author
  • A. D. Grigoriev
  • A. M. Dyugaev
ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • 11 Downloads

Abstract

We analyze the experimental data [1] on inelastic neutron scattering by a thin 5-atomic-layer film of liquid helium at three different temperatures: T = 0.4, 0.98, and 1.3 K. These data were partially published previously [2–4], but here we present them in a better quality and at various temperatures. The neutron scattering intensity plots, in addition to the previously know dispersion of phonons and ripplons, suggest a branch of gapped surface excitations with activation energy ~4.5 K and the dispersion similar to that expected for surfons—the bound quantum states of helium atoms above liquid helium surface, proposed and investigated theoretically [5, 6]. These data, probably, provide the first direct experimental confirmation of surfons. Before these surface excitations received only indirect experimental substantiation, based on the temperature dependence of surface tension coefficient [5, 6] and on their interaction with surface electrons [7, 8]. The existence of surfons as an additional type of surface excitations, although being debated yet, is very important for various physical properties of He surface. We also analyze previous numerical results on excitations in liquid helium and argue that surface excitations similar to surfons have been previously obtained by numerical calculations and called resonance interface states [21].

REFERENCES

  1. 1.
    H. J. Lauter and H. Godfrin, private commun.Google Scholar
  2. 2.
    H. J. Lauter, H. Godfrin, V. L. P. Frank, and P. Leiderer, Phys. Rev. Lett. 68, 2484 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    H. J. Lauter, H. Godfrin, and P. Leiderer, J. Low Temp. Phys. 87, 425 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    B. E. Clements, H. Godfrin, E. Krotscheck, H. J. Lauter, P. Leiderer, V. Passiouk, and C. J. Tymczak, Phys. Rev. B 53, 12242 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    A. M. Dyugaev and P. D. Grigoriev, JETP Lett. 78, 466 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    A. D. Grigoriev, P. D. Grigoriev, and A. M. Dyugaev, J. Low Temp. Phys. 163, 131 (2011); arXiv:0905.2306.ADSCrossRefGoogle Scholar
  7. 7.
    P. D. Grigoriev, A. M. Dyugaev, and E. V. Lebedeva, J. Exp. Theor. Phys. 106, 316 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    P. D. Grigor’ev, A. M. Dyugaev and E. V. Lebedeva, JETP Lett. 87, 106 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    J. S. Rowlinson and B. Widom, Molecular Theory of Cappilarity (Dover, Mineola, NY, 2002).Google Scholar
  10. 10.
    D. O. Edwards and W. F. Saam, in The Free Surface of Liquid Helium, Ed. by D. F. Brewer, Progress in Low Temperature Physics (North-Holland, Amsterdam, 1978), Chap. 4.Google Scholar
  11. 11.
    V. S. Edel’man, Sov. Phys. Usp. 23, 227 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    V. B. Shikin and Yu. P. Monarkha, Two-Dimensional Charged Systems in Helium (Nauka, Moscow, 1989) [in Russian].Google Scholar
  13. 13.
    Y. Monarkha and K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, 2004).CrossRefGoogle Scholar
  14. 14.
    E. Feenberg, Theory of Quantum Fluids (Academic, New York, 1969).Google Scholar
  15. 15.
    G. Mahan, Many-Particle Physics, 2nd ed. (Plenum, New York, 1990), Chap. 10.CrossRefGoogle Scholar
  16. 16.
    E. Krotscheck, Phys. Rev. B 31, 4258 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    E. Krotscheck, Phys. Rev. B 32, 5713 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    E. Krotscheck and C. J. Tymczak, Phys. Rev. B 45, 217 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    B. E. Clements, E. Krotscheck, and C. J. Tymczak, Phys. Rev. B 53, 12253 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    K. A. Gernoth, J. W. Clark, G. Senger and M. L. Ristig, Phys. Rev. B 49, 15836 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    K. A. Gernoth and M. L. Ristig, Phys. Rev. B 45, 2969 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    B. E. Clements, E. Krotscheck, and C. J. Tymczak, J. Low Temp. Phys. 107, 387 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    H.-J. Lauter, in Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids, NATO ASI Series, Ed. by A. F. G. Wyatt aud H. J. Lauter (Plenum, New York, 1991).Google Scholar
  24. 24.
    L. Pricaupenko and J. Treiner, J. Low Temp. Phys. 101, 809 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    C. E. Campbell, B. E. Clements, E. Krotscheck, and M. Saarela, Phys. Rev. B 55, 3769 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, New York, 1987).Google Scholar
  27. 27.
    A. F. Andreev, Sov. Phys. JETP 23, 939 (1966).ADSGoogle Scholar
  28. 28.
    C. G. Paine and G. M. Seidel, Phys. Rev. B 46, 1043 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    K. Shirahama, S. Ito, H. Suto, and K. Kono, J. Low Temp. Phys. 101, 439 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    M. Saitoh, J. Phys. Soc. Jpn. 42, 201 (1977).ADSCrossRefGoogle Scholar
  31. 31.
    R. J. Donnelly and C. F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    E. Krotscheck, private communication.Google Scholar
  33. 33.
    A. D. Grigoriev, P. D. Grigoriev, A. M. Dyugaev, and A. F. Krutov, Low Temp. Phys. 38, 1005 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    M. A. H. Tucker and A. F. G. Wyatt, J. Low Temp. Phys. 100, 105 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • P. D. Grigoriev
    • 1
    • 2
    Email author
  • A. D. Grigoriev
    • 3
  • A. M. Dyugaev
    • 1
  1. 1.Landau Institute for Theoretical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.National University of Science and Technology “MISiS”MoscowRussia
  3. 3.Samara State Technical UniversitySamaraRussia

Personalised recommendations