Advertisement

Journal of Experimental and Theoretical Physics

, Volume 128, Issue 1, pp 166–169 | Cite as

Scaling in the Problem of Capture of Diffusing Particles in Absorbing Traps in an Electric Field

  • V. E. ArkhincheevEmail author
STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • 4 Downloads

Abstract

The asymptotic form of particle survival probability in media with absorbing traps in an electric field has been analyzed. The asymptotic behavior of the survival probability in the case of anisotropic diffusion has been studied in two cases, viz., over short time intervals in the effective medium approximation and over long time intervals in the fluctuation region. It is shown that the description in both cases can be represented in scaling form.

REFERENCES

  1. 1.
    E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    A. A. Ovchinnikov and A. A. Belyi, Teor. Eksp. Khim. 2, 405 (1966).Google Scholar
  3. 3.
    G. V. Ryazanov, Sov. J. Theor. Math. Phys. 10, 181 (1972).CrossRefGoogle Scholar
  4. 4.
    B. Ya. Balagurov and V. G. Vaks, Sov. Phys. JETP 38, 799 (1973).ADSGoogle Scholar
  5. 5.
    B. Ya. Balagurov and V. G. Vaks, Sov. Phys. JETP 38, 966 (1973).Google Scholar
  6. 6.
    M. Donsker and S. Varadhan, Comm. Pure Appl. Math. 28, 525 (1975).MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Donsker and S. Varadhan, Comm. Pure Appl. Math. 32, 721 (1979).MathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Benitez, C. Duclut, H. Chaté, B. Delamotte, I. Dornic, and M. A. Muñoz, Phys. Rev. Lett. 117, 100601 (2016).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Sang Bub Lee, In Chan Kim, C. A. Miller, and S. Torquato, Phys. Rev. B 39, 11833 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    I. Fouxon and M. Holzner, Phys. Rev. E 94, 022132 (2016).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    N. Felekidis, A. Melianas, and M. Kemerink, Phys. Rev. B 94, 035205 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    P. Grassberger and I. Procaccia, Phys. Rev. A 26, 3686 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    B. Movaghar, B. Pohlmann, and D. Würtz, Phys. Rev. A 29, 1568 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    V. Mehra and P. Grassberger, Phys. D (Amsterdam, Neth.) 168, 244 (2002).Google Scholar
  15. 15.
    D. Ioffe and Y. Velenik, Comm. Math. Phys. 313, 209 (2012).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Agliari et al., New J. Phys. 14, 063027 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    V. E. Arkhincheev, JETP Lett. 67, 545 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    V. E. Arkhincheev, JETP Lett. 67, 545 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    V. E. Arkhincheev, AIP Conf. Proc. 553, 231 (2001). http://dx.doi.org/ doi  https://doi.org/10.1063/1.1358189 ADSCrossRefGoogle Scholar
  20. 20.
    Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].Google Scholar
  21. 21.
    L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Cleaver Hume, London, 1959; Nauka, Moscow, 1977).Google Scholar
  22. 22.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979).Google Scholar
  23. 23.
    L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization (World Scientific, Singapore, 2000).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Laboratory of Applied Physics, Advanced Institute of Materials Science, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations