Advertisement

Journal of Experimental and Theoretical Physics

, Volume 128, Issue 1, pp 133–157 | Cite as

Spectral–Dynamic Model of the Hot Plasma Layer Expansion

  • E. A. GovrasEmail author
  • V. Yu. Bychenkov
STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • 8 Downloads

Abstract

We propose a theoretical model describing the expansion of a plasma layer into vacuum for an arbitrary electron plasma component temperature. Comparison with the known limiting cases of the quasi-neutral outflow and the Coulomb explosion, as well as with the results of the 1D electrostatic simulation, has revealed a high accuracy of the proposed model in the description of the spectral–energy and spatial characteristics of ions accelerated during the plasma expansion. The procedure for obtaining the relations between the characteristics of accelerated ions and the laser pulse and target parameters is described with regard to qualitative predictions and the description of the results of numerical kinetic simulation and experiments on the laser and plasma acceleration of ions.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 17-12-01283).

REFERENCES

  1. 1.
    R. Snavely, M. Key, S. Hatchett, et al., Phys. Rev. Lett. 85, 2945 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    I. J. Kim, K. H. Pae, I. W. Choi, et al., Phys. Plasmas 23, 070701 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    A. Higginson, R. J. Gray, M. King, et al., Nat. Commun. 9, 724 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Brantov, E. A. Govras, V. F. Kovalev, et al., Phys. Rev. Lett. 116, 085004 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    A. V. Gurevich, L. V. Pariiskaya, and L. P. Pitaevskii, Sov. Phys. JETP 22, 449 (1965).ADSGoogle Scholar
  6. 6.
    P. Mora, Phys. Rev. Lett. 90, 185002 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    M. Allen, P. Patel, A. Mackinnon, et al., Phys. Rev. Lett. 93, 265004 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    N. G. Basov, V. A. Boiko, V. A. Dement’ev, et al., Sov. Phys. JETP 24, 659 (1967).ADSGoogle Scholar
  9. 9.
    D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    H. Kiriyama, M. Mori, Y. Nakai, et al., Opt. Lett. 32, 2315 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    H. Kiriyama, M. Mori, Y. Nakai, et al., Opt. Commun. 282, 625 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    S. Fourmaux, S. Payeur, S. Buffechoux, et al., Opt. Express 19, 8486 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    A. Lévy, T. Ceccotti, P. D’Oliveira, et al., Opt. Lett. 32, 310 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    A. Lévy, T. Ceccotti, H. Popescu, et al., Eur. Phys. J. Spec. Top. 175, 111 (2009).CrossRefGoogle Scholar
  15. 15.
    A. Henig, S. Steinke, M. Schnürer, et al., Phys. Rev. Lett. 103, 245003 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    A. Henig, D. Kiefer, K. Markey, et al., Phys. Rev. Lett. 103, 045002 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    J. Braenzel, A. A. Andreev, K. Platonov, et al., Phys. Rev. Lett. 114, 124801 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    D. Kiefer, A. Henig, D. Jung, et al., Eur. Phys. J. D 55, 427 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    F. Dollar, T. Matsuoka, G. M. Petrov, et al., Phys. Rev. Lett. 107, 065003 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    A. Mackinnon, Y. Sentoku, P. Patel, et al., Phys. Rev. Lett. 88, 215006 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    J. Fuchs, P. Antici, E. d’Humières, et al., Nat. Phys. 2, 48 (2006).CrossRefGoogle Scholar
  22. 22.
    F. Dollar, C. Zulick, T. Matsuoka, et al., Phys. Plasmas 20, 056703 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    V. F. Kovalev, V. Yu. Bychenkov, and V. T. Tikhonchuk, J. Exp. Theor. Phys. 95, 226 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    D. Dorozhkina and V. Semenov, Phys. Rev. Lett. 81, 2691 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    Yu. V. Medvedev, Plasma Phys. Contr. Fusion 47, 1031 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    N. Iwata, K. Mima, Y. Sentoku, et al., Phys. Plasmas 24, 073111 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    V. Yu. Bychenkov and V. F. Kovalev, Quantum Electron. 35, 1143 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    M. Passoni and M. Lontano, Laser Part. Beams 22, 163 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    M. Passoni and M. Lontano, Phys. Rev. Lett. 101, 115001 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    S. Betti, F. Ceccherini, F. Cornolti, et al., Plasma Phys. Control. Fusion 47, 521 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    E. A. Govras and V. Yu. Bychenkov, Bull. Lebedev Phys. Inst. 42, 176 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    A. V. Brantov, E. A. Govras, V. Yu. Bychenkov, et al., Phys. Rev. ST Accel. Beams 18, 021301 (2015).ADSCrossRefGoogle Scholar
  33. 33.
    V. Yu. Bychenkov, A. V. Brantov, E. A. Govras, and V. F. Kovalev, Phys. Usp. 58, 71 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    V. Yu. Bychenkov, A. V. Brantov, and E. A. Govras, Plasma Phys. Control. Fusion 58, 034022 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    J. E. Crow, P. L. Auer, and J. E. Allen, J. Plasma Phys. 14, 65 (1975).ADSCrossRefGoogle Scholar
  37. 37.
    L. Wickens, J. Allen, and P. Rumsby, Phys. Rev. Lett. 41, 243 (1978).ADSCrossRefGoogle Scholar
  38. 38.
    Yu. I. Chutov and A. Yu. Kravchenko, Sov. J. Plasma Phys. 6, 151 (1980).ADSGoogle Scholar
  39. 39.
    Yu. V. Medvedev, Plasma Phys. Control. Fusion 39, 291 (1997).ADSCrossRefGoogle Scholar
  40. 40.
    S. Wilks, W. Kruer, M. Tabak, et al., Phys. Rev. Lett. 69, 1383 (1992).ADSCrossRefGoogle Scholar
  41. 41.
    V. Yu. Bychenkov, V. N. Novikov, D. Batani, et al., Phys. Plasmas 11, 3242 (2004).ADSCrossRefGoogle Scholar
  42. 42.
    E. A. Govras and V. Yu. Bychenkov, JETP Lett. 98, 70 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    A. V. Gurevich and A. P. Meshcherkin, Sov. Phys. JETP 53, 937 (1981).Google Scholar
  44. 44.
    J. E. Allen and M. Perego, Phys. Plasmas 21, 034504 (2014).ADSCrossRefGoogle Scholar
  45. 45.
    Yu. V. Medvedev, Nonlinear Phenomena During Decays of Discontinuities in a Rarefied Plasma (Fizmatlit, Moscow, 2012), p. 344 [in Russian].Google Scholar
  46. 46.
    A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 38, 291 (1974).ADSGoogle Scholar
  47. 47.
    A. V. Gurevich and K. P. Zybin, Sov. Phys. JETP 67, 1 (1988).Google Scholar
  48. 48.
    A. Kaplan, B. Dubetsky, and P. Shkolnikov, Phys. Rev. Lett. 91, 143401 (2003).ADSCrossRefGoogle Scholar
  49. 49.
    V. F. Kovalev, K. I. Popov, V. Yu. Bychenkov, et al., Phys. Plasmas 14, 053103 (2007).ADSCrossRefGoogle Scholar
  50. 50.
    K. I. Popov, V. Yu. Bychenkov, W. Rozmus, et al., Phys. Plasmas 17, 083110 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Dukhov All-Russian Research Institute of Automatics (VNIIA)MoscowRussia

Personalised recommendations