Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 844–850 | Cite as

Quantum Fluctuations and Gross-Pitaevskii Theory

  • S. StringariEmail author


Using the linearized version of the time dependent Gross–Pitaevskii equation, we calculate the dynamic response of a Bose–Einstein condensed gas to periodic density and particle perturbations. The zero temperature limit of the fluctuation—dissipation theorem is used to evaluate the corresponding quantum fluctuations induced by the elementary excitations in the ground state. In uniform conditions the predictions of Bogoliubov theory, including the infrared divergency of the particle distribution function and the quantum depletion of the condensate, are exactly reproduced by Gross–Pitaevskii theory. Results are also given for the crossed particle-density response function and the extension of the formalism to nonuniform systems is discussed. The generalization of the Gross–Pitaevskii equation to include beyond mean field effects is finally considered and an explicit result for the chemical potential is found, in agreement with the prediction of Lee–Huang–Yang theory.



It is a great pleasure to thank long-standing scientific collaborations and stimulating discussions with Lev Pitaevskii, which started 30 years ago, after my first visit to the Kapitza Institute for Physical Problems in Moscow and are still now continuing successfully in Trento.


  1. 1.
    N. N. Bogoliubov, J. Phys. USSR 11, 23 (1947).Google Scholar
  2. 2.
    E. P. Gross, Nuovo Cimento 20, 454 (1961).CrossRefGoogle Scholar
  3. 3.
    L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).MathSciNetGoogle Scholar
  4. 4.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    L. Pitaevskii and S. Stringari, Bose–Einstein Condensation and Superfluidity (Oxford Univ. Press, Oxford, 2016).CrossRefzbMATHGoogle Scholar
  6. 6.
    J. Gavoret and Ph. Nozieres, Ann. Phys. (N.Y.) 28, 349 (1964).ADSCrossRefGoogle Scholar
  7. 7.
    T. D. Lee and K. Huang, Phys. Rev. 105, 1119 (1957).ADSCrossRefGoogle Scholar
  8. 8.
    T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 136, 1135 (1957).ADSCrossRefGoogle Scholar
  9. 9.
    L. P. Pitaevskii and S. Stringari, J. Low Temp. Phys. 85, 377 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    R. Lopes, Ch. Eigen, Nir Navon, D. Clement, R. P. Smith, and Z. Hadzibabic, Phys. Rev. Lett. 119, 190404 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    S. Stringari, Phys. Rev. B 46, 2974 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    L. Santos, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev. Lett. 90, 250403 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    L. Chomaz et al., Nat. Phys. 14, 442 (2018).CrossRefGoogle Scholar
  14. 14.
    M. Jona-Lasinio, K. Lakomy, and L. Santo, Phys. Rev. A 88, 025603 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    M. Greiner et al., Nature (London, U.K.) 415, 39 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    R. Chang, Q. Bouton, H. Cayla, C. Qu, A. Aspect, C. I. Westbrook, and D. Clément, Phys. Rev. Lett. 117, 235303 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    Chunlei Qu, L. Pitaevskii, and S. Stringari, Phys. Rev. A 94, 063635 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    E. Timmermans, P. Tommasini, and K. Huang, Phys. Rev. A 55, 3645 (1997).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Y. Castin and R. Dum, Phys. Rev. A 57, 3008 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.INO-CNR BEC Center and Dipartimento di Fisica, Università di TrentoPovoItaly

Personalised recommendations