Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 883–888 | Cite as

Concepts for a Deuterium–Deuterium Fusion Reactor

  • R. OnofrioEmail author
Article
  • 25 Downloads

Abstract

We revisit the assumption that reactors based on deuterium–deuterium (D–D) fusion process have to be necessarily developed after the successful completion of experiments and demonstrations for deuterium–tritium (D–T) fusion reactors. Two possible mechanisms for enhancing the reactivity are discussed. Hard tails in the energy distribution of the nuclei, through the so-called κ-distribution, allow to boost the number of energetic nuclei available for fusion reactions. At higher temperatures than usually considered in D–T plasmas, vacuum polarization effects from real e+e and μ+μ pairs may provide further speed-up due to their contribution to screening of the Coulomb barrier. Furthermore, the energy collection system can benefit from the absence of the lithium blanket, both in simplicity and compactness. The usual thermal cycle can be bypassed with comparable efficiency levels using hadron calorimetry and third-generation photovoltaic cells, possibly allowing to extend the use of fusion reactors to broader contexts, most notably maritime transport.

REFERENCES

  1. 1.
    N. Mitchell and E. Salpietro, Nucl. Fusion 26, 1246 (1986).CrossRefGoogle Scholar
  2. 2.
    S. Zheng, D. B. King, L. Garzotti, E. Surrey, and T. N. Todd, Fusion Eng. Des. 103, 13 (2016).CrossRefGoogle Scholar
  3. 3.
    P. E. Stott, Plasma Phys. Control. Fusion 47, 1305 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    G. Livadiotis and D. J. McComas, Astrophys. J. 741, 88 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    D. C. Nicholls, M. A. Dopita, and R. S. Sutherland, Astrophys. J. 752, 148 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    M. Salewski, B. Geiger, A. S. Jacobsen, et al., Nucl. Fusion 58, 036017 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    P. Elmfors, D. Persson, and B.-S. Skagerstam, Phys. Rev. Lett. 71, 480 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    U. H. Danielsson and D. Grasso, Phys. Rev. D 52, 2533 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    J. I. Kapusta, Finite-Temperature Field Theory (Cambridge Univ. Press, Cambridge, U.K., 1989).zbMATHGoogle Scholar
  12. 12.
    J. Z. Kaminski, J. Phys. A 16, 2587 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    E. Schatzman, J. Phys. Radium 9, 46 (1948).CrossRefGoogle Scholar
  14. 14.
    G. Keller, Astrophys. J. 118, 142 (1953).ADSCrossRefGoogle Scholar
  15. 15.
    E. E. Salpeter, Austr. J. Phys. 7, 373 (1954).ADSCrossRefGoogle Scholar
  16. 16.
    M. L. Shmatov, Tech. Phys. Lett. 36, 386 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    R. Hawrami, J. Glodo, K. S. Shah, N. Cherepy, S. Payne, A. Burger, and L. Boatner, J. Cryst. Growth 379, 69 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    G. Conibeer, Mater. Today 10, 42 (2007).CrossRefGoogle Scholar
  19. 19.
    J. Turner, Phys. Proc. 37, 301 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    J. E. Mdhluli, H. Jivan, R. Erasmus, et al., J. Phys.: Conf. Ser. 878, 012008 (2017).Google Scholar
  21. 21.
    Z. Wan, M. Zhu, S. Chen, and D. Sperling, Nature (London, U.K.) 530, 275 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    K. Svozil, Ethics Sci. Environ. Politics 16, 25 (2016); arXiv:1605.08569v3 [quant-ph].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Astronomia “Galileo Galilei,” Università di PadovaPadovaItaly
  2. 2.Department of Physics and Astronomy, Dartmouth College, 6127 Wilder LaboratoryHanoverUSA

Personalised recommendations