Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 922–932 | Cite as

Topological Defects in Helical Magnets

  • T. NattermannEmail author
  • V. L. PokrovskyEmail author


Helical magnets which violated space inversion symmetry have rather peculiar topological defects. In isotropic helical magnets with exchange and Dzyaloshinskii–Moriya interactions, there are only three types of linear defects: ±π and 2π-disclinations. Weak crystal anysotropy suppresses linear defects on large scale. Instead, planar defects appear: domain walls that separate domains with different preferential directions of helical wavevectors. The appearance of such domain walls in the bulk helical magnets and some of their properties were predicted in the work [1]. In a recent work by an international team of experimenters and theorists [2], the existence of new types of domain walls on crystal faces of helical magnet FeGe was discovered. They have many features predicted by theory [1], but display also unexpected properties, one of them is the possibility of arbitrary angle between helical wavevectors. Depending on this angle, the domain walls observed in [2] can be divided in two classes: smooth and zig-zag. This article contains a mini-review of the existing theory and experiment. It also contains new results that explain why in a system with continuous orientation of helical wavevectors domain walls are possible. We discuss why and at what conditions smooth and zig-zag domain walls appear, analyze spin textures associated with helical domain walls, and find the dependence of their width on the angle between helical wavevectors.



This work was supported by the University of Cologne Center of Excellence QM2 and by William R. Thurman’58 Chair in Physics, Texas A&M University. We are thankful to D. Meier for very useful discussion of experimental procedure and sending us the original version of Fig. 5. Our thanks due to him and Y. Tokura for kind permission to use experimental figures from article [2] and to Chen Sun for his courteous help in preparation of Fig. 2.


  1. 1.
    F. Li, T. Nattermann, and V. L. Pokrovsky, Phys. Rev. Lett. 108, 107203 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    P. Schönherr, J. Müller, L. Köhler, A. Rosch, N. Kanazawa, Y. Tokura, M. Garst, and D. Meier, Nat. Phys. Lett., online, March 5 (2018).Google Scholar
  3. 3.
    G. Toulouse and M. Kleman, J. Phys. Lett. 37, L-149 (1976).CrossRefGoogle Scholar
  4. 4.
    G. E. Volovik and V. P. Mineev, Sov. Phys. JETP 45, 1186 (1977).ADSGoogle Scholar
  5. 5.
    P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 1995).CrossRefGoogle Scholar
  6. 6.
    G. E. Volovik, The Universe in a Helium Droplet (Oxford Univ. Press, Oxford, 2003).zbMATHGoogle Scholar
  7. 7.
    A. M. Polyakov, Gauge Fields and Strings (Harwood Academic, Chur, 1987).Google Scholar
  8. 8.
    A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).Google Scholar
  9. 9.
    L. Onsager, Nuovo Cim. 6, 249 (1949).MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. P. Feynman, Prog. Low Temp. Phys. 1, 17 (1955).CrossRefGoogle Scholar
  11. 11.
    H. P. Haasen, Ber. Gott. Akad. Wiss. 1210, 107 (1971).Google Scholar
  12. 12.
    P. W. Anderson, Basic Notions in Condensed Matter Physics (Benjamin/Cummings, London, Amsterdam, Don Mills, Sydney, Tokyo, 1984).Google Scholar
  13. 13.
    T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).ADSGoogle Scholar
  15. 15.
    A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    A. Abanov and V. L. Pokrovsky, Phys. Rev. B 58, R8889 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    N. S. Kiselev, A. N. Bogdanov, R. Schäfer, and U. K. Rößler, J. Phys. D: Appl. Phys. 44, 392001 (2011).CrossRefGoogle Scholar
  18. 18.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Peiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science (Washington, DC, U. S.) 323, 915 (2009).CrossRefGoogle Scholar
  19. 19.
    X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature (London, U.K.) 465, 901 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 17031 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    G. E. Volovik, Exotic Properties of Superfluid 3He (World Scientific, Singapore, 1992).CrossRefGoogle Scholar
  22. 22.
    S. M. Muhlbauer et al., Nature (London, U.K.) 427, 227 (2004).CrossRefGoogle Scholar
  23. 23.
    M. Uchida et al., Phys. Rev. B 77, 184402 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    M. Uchida, Y. Onose, Y. Matsui, and Y. Tokura, Science (Washington, DC, U. S.) 311, 359 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    B. Lebech, J. Bernhard, and T. Freltoft, J. Phys.: Condens. Matter 1, 6105 (1989).ADSGoogle Scholar
  26. 26.
    F. Bloch, Z. Phys. 74, 295 (1932).ADSCrossRefGoogle Scholar
  27. 27.
    L. Neel, Ann. Phys. 3, 137 (1948).CrossRefGoogle Scholar
  28. 28.
    M. Garst, private commun. (2015).Google Scholar
  29. 29.
    P. Oswald and M. Klemn, Journal de Physique 42, 1461 (1981).Google Scholar
  30. 30.
    V. L. Pokrovsky and A. L. Talapov, Theory of In-commensurate Crystals (Harwood Academic, Chur, 1983).Google Scholar
  31. 31.
    I. Lyksyutov, A. G. Naumovets, and V. Pokrovsky, Two-Dimensional Crystals (Academic, Boston, 1983).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute for Theoretical Physics, University of CologneKölnGermany
  2. 2.Department of Physics, Texas A&M UniversityCollege StationUSA
  3. 3.Landau Institute for Theoretical Physics, ChernogolovkaMoscow oblastRussia

Personalised recommendations