Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 889–902 | Cite as

On the Equilibrium State of a Gravitating Bose–Einstein Condensate

  • B. E. MeierovichEmail author
Article
  • 10 Downloads

Abstract

The properties of a scalar field in equilibrium with its own gravitational field are discussed. The scalar field serves as the wavefunction of a Bose–Einstein condensate in equilibrium at a temperature close to absolute zero. The wavefunction of a laboratory Bose–Einstein condensate satisfies the Gross–Pitaevskii equation. The superheavy objects (most likely black holes) at the centers of galaxies are the subject of applying the theory of gravitating fermion and boson clusters. In contrast to a laboratory experiment, the energy spectrum of gravitating bosons is a functional of the wavefunction for the entire condensate. The very presence of a level depends on its population. In particular, at zero temperature for each level, there is a critical total mass Mcr above which an equilibrium configuration (and, hence, this level) does not exist. The critical mass Mcr increases proportionally to the level number. At M > Mcr, the next level acts as the ground state. The concept of the ground state of a boson system is modified. The radius of the sphere occupied by the condensate also increases proportionally to the level number and, therefore, the density does not grow with increasing condensate mass; as long as the spacing between nearby energy levels is great compared to the temperature, no constraints on the total mass arise. One bunch of bosons at a high quantum level with a large mass is energetically less favorable than several isolated centers, with a condensate at the zeroth quantum level being in each of them.

Notes

ACKNOWLEDGMENTS

I thank A.F. Andreev for his critical remarks at the seminar of the Institute for Physical Problems and V.I. Marchenko for his interest in this work and a useful exchange of views. This is a great honor to print a paper in the JETP issue devoted to the 85th anniversary of L.P. Pitaevskii. Since the early 1960s until now for me Lev Petrovich has been a teacher, a supervisor, a tutor, and a worthy example of devotion to science. Happy Birthday You, Lev Petrovich! I wish health to you and the continuation of active scientific work.

REFERENCES

  1. 1.
    S. Chandrasekhar, Astrophys. J. 74, 81 (1931).ADSCrossRefGoogle Scholar
  2. 2.
    L. D. Landau, Phys. Zs. Sowjet. 1, 285 (1932).Google Scholar
  3. 3.
    J. R. Oppenheimer and G. Volkoff, Phys. Rev. 55, 374 (1939).ADSCrossRefGoogle Scholar
  4. 4.
    S. Gillessen, F. Eisenhauer, S. Trippe, et al., Astrophys. J. 692, 1075 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    Wikipedia, https://en.wikipedia.org/wiki/Standard_Model.Google Scholar
  6. 6a.
    D. D. Ivanenko and D. F. Kurdgelaidze, Astrophys. J. 1, 251 (1965);CrossRefGoogle Scholar
  7. 6b.
    Lett. Nuovo Cimento 2, 13 (1969).Google Scholar
  8. 7.
    G. Baym, T. Hatsuda, T. Kojo, et al., arXiv:1707.04966v1 [astro-ph.HE].Google Scholar
  9. 8.
    M. Colpi, S. L. Shapiro, and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).ADSMathSciNetCrossRefGoogle Scholar
  10. 9.
    R. Friedberg, T. D. Lee, and Y. Pang, Phys. Rev. D 35, 3640 (1987).ADSCrossRefGoogle Scholar
  11. 10.
    D. J. Kaup, Phys. Rev. 172, 1331 (1968).ADSCrossRefGoogle Scholar
  12. 11.
    D. F. Torres, S. Capozziello, and G. Lambiase, Phys. Rev. D 62, 104012 (2000).ADSCrossRefGoogle Scholar
  13. 12.
    E. M. Lifshits and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Fizmatlit, Moscow, 2000; Pergamon, New York, 1980).Google Scholar
  14. 13.
    F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, http://arxiv.org/abs/cond-mat/9806038v2.Google Scholar
  15. 14.
    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science (Washington, DC, U. S.) 269, 198 (1995).ADSCrossRefGoogle Scholar
  16. 15.
    K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. vanDruten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).ADSCrossRefGoogle Scholar
  17. 16.
    V. L. Ginzburg and L. P. Pitaevskii, Sov. Phys. JETP 7, 858 (1958).Google Scholar
  18. 17.
    L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).MathSciNetGoogle Scholar
  19. 18.
    E. P. Gross, Nuovo Cimento 20, 454 (1961).CrossRefGoogle Scholar
  20. 19.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).Google Scholar
  21. 20.
    N. A. Dmitriev and S. A. Kholin, Vopr. Kosmogon. 9, 254 (1963).Google Scholar
  22. 21.
    Ya. B. Zel’dovich and I. D. Novikov, Sov. Phys. Usp. 7, 763 (1964).CrossRefGoogle Scholar
  23. 22.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973).Google Scholar
  24. 23.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  25. 24.
    B. K. Harisson, K. S. Thorne, M. Wakano, and J. A. Wheeler, Gravitation Theory and Gravitational Collapse (Univ of Chicago Press, Chicago, 1965).Google Scholar
  26. 25.
    J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).ADSCrossRefGoogle Scholar
  27. 26.
    F. E. Schunck and E. W. Mielke, Class. Quantum Grav. 20, R301 (2003); arxiv:0801.0307v1.Google Scholar
  28. 27.
    R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).ADSCrossRefGoogle Scholar
  29. 28.
    L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev. D 95, 043541 (2017).ADSCrossRefGoogle Scholar
  30. 29.
    L. Visinelli, S. Baum, J. Redondo, K. Freese, and F. Wilczek, Phys. Lett. B 777, 64 (2018).ADSMathSciNetCrossRefGoogle Scholar
  31. 30.
    E. Witten, Phys. Rev. 30, 272 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kapitza Institute for Physical Problems, Russian Academy of SciencesMoscowRussia

Personalised recommendations