Drag Force and Superfluidity in the Supersolid Stripe Phase of a Spin–Orbit-Coupled Bose–Einstein Condensate
- 12 Downloads
Abstract
The phase diagram of a spin–orbit-coupled two-component Bose gas includes a supersolid stripe phase, which is featuring density modulations along the direction of the spin–orbit coupling. This phase has been recently found experimentally [31]. In the present work, we characterize the superfluid behavior of the stripe phase by calculating the drag force acting on a moving impurity. Because of the gapless band structure of the excitation spectrum, the Landau critical velocity vanishes if the motion is not strictly parallel to the stripes, and energy dissipation takes place at any speed. Moreover, due to the spin–orbit coupling, the drag force can develop a component perpendicular to the velocity of the impurity. Finally, by estimating the time over which the energy dissipation occurs, we find that for slow impurities, the effects of friction are negligible on a time scale up to several seconds, which is comparable with the duration of a typical experiment.
REFERENCES
- 1.M. Boninsegni and N. V. Prokof’ev, Rev. Mod. Phys. 84, 759 (2012).ADSCrossRefGoogle Scholar
- 2.E. P. Gross, Phys Rev. 106, 161 (1957).ADSCrossRefGoogle Scholar
- 3.E. P. Gross, Ann. Phys. (N.Y.) 4, 57 (1958).ADSCrossRefGoogle Scholar
- 4.A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969).ADSGoogle Scholar
- 5.A. J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).ADSCrossRefGoogle Scholar
- 6.G. V. Chester, Phys. Rev. A 2, 256 (1970).ADSCrossRefGoogle Scholar
- 7.D. A. Kirzhnits and Yu. A. Nepomnyashchii, Sov. Phys. JETP 32, 1191 (1971).ADSGoogle Scholar
- 8.L. P. Pitaevskii, JETP Lett. 39, 511 (1984).ADSGoogle Scholar
- 9.S. Balibar, Nature (London, U.K.) 464, 176 (2010).ADSCrossRefGoogle Scholar
- 10.Y. Pomeau and S. Rica, Phys. Rev. Lett. 72, 2426 (1994).ADSCrossRefGoogle Scholar
- 11.N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302 (2010).ADSCrossRefGoogle Scholar
- 12.F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo, Phys. Rev. Lett. 105, 135301 (2010).ADSCrossRefGoogle Scholar
- 13.S. Saccani, S. Moroni, and M. Boninsegni, Phys. Rev. B 83, 092506 (2011).ADSCrossRefGoogle Scholar
- 14.H. P. Buchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, Phys. Rev. Lett. 98, 060404 (2007).ADSCrossRefGoogle Scholar
- 15.G. E. Astrakharchik, J. Boronat, I. L. Kurbakov, and Yu. E. Lozovik, Phys. Rev. Lett. 98, 060405 (2007).ADSCrossRefGoogle Scholar
- 16.I. L. Kurbakov, Yu. E. Lozovik, G. E. Astrakharchik, and J. Boronat, Phys. Rev. B 82, 014508 (2010).ADSCrossRefGoogle Scholar
- 17.Z.-K. Lu, Y. Li, D. S. Petrov, and G. V. Shlyapnikov, Phys. Rev. Lett. 115, 075303 (2015).ADSCrossRefGoogle Scholar
- 18.C. Wang, C. Gao, C.-M. Jian, and H. Zhai, Phys. Rev. Lett. 105, 160403 (2010).ADSCrossRefGoogle Scholar
- 19.T.-L. Ho and S. Zhang, Phys. Rev. Lett. 107, 150403 (2011).ADSCrossRefGoogle Scholar
- 20.C.-J. Wu, I. Mondragon-Shem, and X.-F. Zhou, Chin. Phys. Lett. 28, 097102 (2011).ADSCrossRefGoogle Scholar
- 21.Y. Li, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 108, 225301 (2012).ADSCrossRefGoogle Scholar
- 22.V. Galitski and I. B. Spielman, Nature (London, U.K.) 494, 49 (2013).ADSCrossRefGoogle Scholar
- 23.X. Zhou, Y. Li, Z. Cai, and C. Wu, J. Phys. B 46, 134001 (2013).ADSCrossRefGoogle Scholar
- 24.H. Zhai, Rep. Progr. Phys. 78, 026001 (2015).ADSMathSciNetCrossRefGoogle Scholar
- 25.Y. Li, G. I. Martone, and S. Stringari, in Annual Review of Cold Atoms and Molecules, Ed. by K. W. Madison, K. Bongs, L. D. Carr, A. M. Rey, and H. Zhai (World Scientific, Singapore, 2015), Vol. 3, Chap. 5, p. 201.Google Scholar
- 26.Y. Zhang, M. E. Mossman, T. Busch, P. Engels, and C. Zhang, Front. Phys. 11, 118103 (2016).CrossRefGoogle Scholar
- 27.Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Nature (London, U.K.) 471, 83 (2011).ADSCrossRefGoogle Scholar
- 28.J. Li, W. Huang, B. Shteynas, S. Burchesky, F. C. Top, E. Su, J. Lee, A. O. Jamison, and W. Ketterle, Phys. Rev. Lett. 117, 185301 (2016).ADSCrossRefGoogle Scholar
- 29.G. I. Martone, Y. Li, and S. Stringari, Phys. Rev. A 90, 041604 (2014).ADSCrossRefGoogle Scholar
- 30.G. I. Martone, Eur. Phys. J. Spec. Top. 224, 553 (2015).CrossRefGoogle Scholar
- 31.J. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. C. Top, A. O. Jamison, and W. Ketterle, Nature (London, U.K.) 543, 91 (2017).ADSCrossRefGoogle Scholar
- 32.J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T. Donner, Nature (London, U.K.) 543, 87 (2017).ADSCrossRefGoogle Scholar
- 33.Y. Li, G. I. Martone, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 110, 235302 (2013).ADSCrossRefGoogle Scholar
- 34.G. E. Astrakharchik and L. P. Pitaevskii, Phys. Rev. A 70, 013608 (2004).ADSCrossRefGoogle Scholar
- 35.Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).ADSCrossRefGoogle Scholar
- 36.G. Dresselhaus, Phys. Rev. 100, 580 (1955).ADSCrossRefGoogle Scholar
- 37.L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensation and Superfluidity (Oxford Univ. Press, Oxford, 2016).CrossRefzbMATHGoogle Scholar
- 38.C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge Univ. Press, Cambridge, 2008).CrossRefGoogle Scholar
- 39.S. Saccani, S. Moroni, and M. Boninsegni, Phys. Rev. Lett. 108, 175301 (2012).ADSCrossRefGoogle Scholar
- 40.M. Kunimi and Y. Kato, Phys. Rev. B 86, 060510(R) (2012).Google Scholar
- 41.T. Macri, F. Maucher, F. Cinti, and T. Pohl, Phys. Rev. A 87, 061602(R) (2013).Google Scholar
- 42.R. Liao, Phys. Rev. Lett. 120, 140403 (2018).ADSCrossRefGoogle Scholar
- 43.T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 (1957).ADSMathSciNetCrossRefGoogle Scholar
- 44.Z.-Q. Yu, Phys. Rev. A 95, 033618 (2017).ADSCrossRefGoogle Scholar
- 45.P.-S. He, Y.-H. Zhu, and W.-M. Liu, Phys. Rev. A 89, 053615 (2014).ADSCrossRefGoogle Scholar
- 46.R. Liao, O. Fialko, J. Brand, and U. Zu[umlaut]licke, Phys. Rev. A 93, 023625 (2016).ADSCrossRefGoogle Scholar
- 47.M. Kato, X.-F. Zhang, and H. Saito, Phys. Rev. A 96, 033613 (2017).ADSCrossRefGoogle Scholar
- 48.G. I. Martone, Y. Li, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 86, 063621 (2012).ADSCrossRefGoogle Scholar
- 49.M. A. Khamehchi, Y. Zhang, C. Hamner, T. Busch, and P. Engels, Phys. Rev. A 90, 063624 (2014).ADSCrossRefGoogle Scholar
- 50.S.-C. Ji, L. Zhang, X.-T. Xu, Z. Wu, Y. Deng, S. Chen, and J.-W. Pan, Phys. Rev. Lett. 114, 105301 (2015).ADSCrossRefGoogle Scholar
- 51.Q. Zhu, C. Zhang, and B. Wu, Europhys. Lett. 100, 50003 (2012).ADSCrossRefGoogle Scholar
- 52.T. Ozawa, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 87, 063610 (2013).ADSCrossRefGoogle Scholar
- 53.W. Zheng, Z.-Q. Yu, X. Cui, and H. Zhai, J. Phys. B 46, 134007 (2013).ADSCrossRefGoogle Scholar
- 54.X.-L. Chen, J. Wang, Y. Li, X.-J. Liu, and H. Hu, Phys. Rev. A 98, 013614 (2018).Google Scholar
- 55.G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev. A 66, 023603 (2002).ADSCrossRefGoogle Scholar
- 56.K. Sun, C. Qu, Y. Xu, Y. Zhang, and C. Zhang, Phys. Rev. A 93, 023615 (2016).ADSCrossRefGoogle Scholar
- 57.Z.-Q. Yu, Phys. Rev. A 93, 033648 (2016).ADSCrossRefGoogle Scholar
- 58.G. I. Martone, F. V. Pepe, P. Facchi, S. Pascazio, and S. Stringari, Phys. Rev. Lett. 117, 125301 (2016).ADSCrossRefGoogle Scholar