Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 826–843 | Cite as

Fermi-Liquid Theory and Pomeranchuk Instabilities: Fundamentals and New Developments

  • A. V. ChubukovEmail author
  • A. Klein
  • D. L. Maslov
Article
  • 9 Downloads

Abstract

This paper is a short review on the foundations and recent advances in the microscopic Fermi-liquid (FL) theory. We demonstrate that this theory is built on five identities, which follow from conservation of the total charge (particle number), spin, and momentum in a translationally and SU(2)-invariant FL. These identities allow one to express the effective mass and quasiparticle residue in terms of an exact vertex function and also impose constraints on the “quasiparticle” and “incoherent” (or “low-energy” and “high-energy”) contributions to the observable quantities. Such constraints forbid certain Pomeranchuk instabilities of a FL, e.g., towards phases with order parameters that coincide with charge and spin currents. We provide diagrammatic derivations of these constraints and of the general (Leggett) formula for the susceptibility in arbitrary angular momentum channel, and illustrate the general relations through simple examples treated in perturbation theory.

Notes

ACKNOWLEDGMENTS

We thank J. Schmalian, P. Woelfle, and Y. Wu for valuable discussions. The work was supported by NSF DMR-1523036 (A. V. C. and A. K.) and NSF DMR-1720816 (D. L. M.).

REFERENCES

  1. 1.
    E. M. Lifshits and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Pergamon, New York, 1980).Google Scholar
  2. 2.
    E. M. Livshits and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).Google Scholar
  3. 3.
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Butterworth–Heinemann, 1982).Google Scholar
  4. 4.
    L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensate and Superfluidity (Oxford Univ. Press, Oxford, 2016).CrossRefzbMATHGoogle Scholar
  5. 5.
    L. D. Landau, Sov. Phys. JETP 3, 920 (1956).Google Scholar
  6. 6.
    L. D. Landau, Sov. Phys. JETP 5, 101 (1957).Google Scholar
  7. 7.
    L. D. Landau, Sov. Phys. JETP 8, 70 (1959).Google Scholar
  8. 8.
    A. Abrikosov, L. Gorkov, and I. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Books on Physics Series (Dover, New York, 1975).zbMATHGoogle Scholar
  9. 9.
    P. Nozieres and D. Pines, Theory of Quantum Liquids (Hachette, UK, 1999).zbMATHGoogle Scholar
  10. 10.
    G. Baym and C. J. Pethick, Landau Fermi-Liquid Theory: Concepts and Applications (Wiley, New York, 1991).CrossRefGoogle Scholar
  11. 11.
    P. Anderson, Basic Notions of Condensed Matter Physics (Benjamin/Cummings, London, Amsterdam, Don Mills, Sydney, Tokyo, 1984).Google Scholar
  12. 12.
    R. Shankar, Rev. Mod. Phys. 66, 129 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    I. Pomeranchuk, Sov. Phys. JETP 8, 361 (1959).Google Scholar
  14. 14.
    L. P. Pitaevskii, Sov. Phys. JETP 10, 1267 (1960).MathSciNetGoogle Scholar
  15. 15.
    G. Baym and S. A. Chin, Nucl. Phys. A 262, 527 (1976).ADSCrossRefGoogle Scholar
  16. 16.
    E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Ann. Rev. Condens. Matter Phys. 1, 153 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    R. Fernandes and A. Chubukov, Rep. Progr. Phys. 80, 014503 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    A. J. Leggett, Phys. Rev. 140, A1869 (1965).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Wu and S.-C. Zhang, Phys. Rev. Lett. 93, 036403 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    C. Wu, K. Sun, E. Fradkin, and S.-C. Zhang, Phys. Rev. B 75, 115103 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Chubukov and D. L. Maslov, Phys. Rev. Lett. 103, 216401 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    E. I. Kiselev, M. S. Scheurer, P. Wolfle, and J. Schmalian, Phys. Rev. B 95, 125122 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    Y.-M. Wu, A. Klein, and A. V. Chubukov, Phys. Rev. B 97, 165101 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    O. Vafek and A. Vishwanath, Ann. Rev. Condens. Matter Phys. 5, 83 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    L. P. Pitaevskii, J. Low Temp. Phys. 164, 173 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    P. S. Kondratenko, Sov. Phys. JETP 19, 972 (1964).MathSciNetGoogle Scholar
  28. 28.
    P. S. Kondratenko, Sov. Phys. JETP 20, 1032 (1965).MathSciNetGoogle Scholar
  29. 29.
    I. Dzyaloshinskii and P. Kondratenko, Sov. Phys. JETP 43, 1036 (1976).ADSGoogle Scholar
  30. 30.
    A. V. Chubukov, J. J. Betouras, and D. V. Efremov, Phys. Rev. Lett. 112, 037202 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    P. Woelfle, private commun.Google Scholar
  32. 32.
    S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).ADSCrossRefGoogle Scholar
  33. 33.
    M. Fabrizio, Lecture Notes on Many-Body Theory (2013), published online.Google Scholar
  34. 34.
    R. A. Żak, D. L. Maslov, and D. Loss, Phys. Rev. B 82, 115415 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    R. A. Żak, D. L. Maslov, and D. Loss, Phys. Rev. B 85, 115424 (2012).ADSCrossRefGoogle Scholar
  36. 36.
    A. Ashrafi, E. I. Rashba, and D. L. Maslov, Phys. Rev. B 88, 075115 (2013).ADSCrossRefGoogle Scholar
  37. 37.
    A. Leggett, Ann. Phys. 46, 76 (1968).ADSCrossRefGoogle Scholar
  38. 38.
    G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990).CrossRefGoogle Scholar
  39. 39.
    H. Ehrenreich, in Proceedings of the International School of Physics Enrico Fermi (1967), Vol. 34.Google Scholar
  40. 40.
    G. Eliashberg, Sov. Phys. JETP 14, 886 (1962).Google Scholar
  41. 41.
    A. M. Finkel’stein, Int. J. Mod. Phys. B 24, 1855 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    A. V. Chubukov and P. Woelfle, Phys. Rev. B 89, 045108 (2014).ADSCrossRefGoogle Scholar
  43. 43.
    V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev. B 64, 195109 (2001).ADSCrossRefGoogle Scholar
  44. 44.
    V. A. Zyuzin, P. Sharma, and D. L. Maslov, unpublished.Google Scholar
  45. 45.
    V. M. Galitskii, Sov. Phys. JETP 7, 104 (1957).Google Scholar
  46. 46.
    A. V. Chubukov and D. L. Maslov, Phys. Rev. B 81, 245102 (2010).ADSCrossRefGoogle Scholar
  47. 47.
    A. A. Abrikosov and I. M. Khalatnikov, Sov. Phys. JETP 6, 888 (1958).ADSGoogle Scholar
  48. 48.
    J. R. Engelbrecht, M. Randeria, and L. Zhang, Phys. Rev. B 45, 10135 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Physics, University of MinnesotaMinneapolisUSA
  2. 2.Department of Physics, University of Florida, P. O. Box 118440GainesvilleUSA

Personalised recommendations