Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 877–882 | Cite as

Expansion of a Superfluid Fermi Gas Monolayer

  • A. V. TurlapovEmail author
  • M. Yu. KaganEmail author
Article
  • 14 Downloads

Abstract

A monolayer of superfluid Fermi gas can be prepared within an optical dipole trap using the tight confinement along the chosen direction. In this case, Cooper pairs occupy the lowest state corresponding to the motion in the trapping potential. After switching off the trapping potential, the initially two-dimensional gas expands to the three-dimensional space. In the case of unitary s-wave interactions, the dynamics of Fermi gas expansion is treated in the framework of appropriately modified Gross–Pitaevskii equation. It is found that the superfluid gas expands significantly faster than the normal gas, in contrast to the situation characteristic of the initially three-dimensional gas. The available experimental data [P. Dyke et al., Phys. Rev. A 93, 011603 (2016)] are close to the predictions of the model under study.

Notes

ACKNOWLEDGMENTS

We are grateful to Igor Boettcher, Selim Jochim, and Puneet Murthy for helpful discussions. The work of A.V.T. was supported by the Presidium of the Russian Academy of Sciences, program “Nonlinear dynamics: basic problems and applications.” The work of M.Yu.K was supported by the Russian Science Foundation, project no. 18-12-00002.

REFERENCES

  1. 1.
    V. I. Balykin, V. G. Minogin, and V. S. Letokhov, Rep. Prog. Phys. 63, 1429 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    R. Onofrio, Phys. Usp. 59, 1129 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    N. N. Kolachevskii and A. V. Taichenachev, Quantum Electron. 47, 393 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G. Hulet, Science (Washington, DC, U. S.) 291, 2570 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science (Washington, DC, U. S.) 269, 198 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    M. C. Tsatsos, P. E. S. Tavares, A. Cidrim, A. R. Fritsch, M. A. Caracanhas, F. Ednilson A. dos Santos, C. F. Barenghi, and V. S. Bagnato, Phys. Rep. 622, 1 (2016).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Turlapov, JETP Lett. 95, 96 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. A 55, R18 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Science (Washington, DC, U. S.) 275, 637 (1997).CrossRefGoogle Scholar
  13. 13.
    Yu. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, JETP Lett. 42, 209 (1985).ADSGoogle Scholar
  14. 14.
    E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 79, 337 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Science (Washington, DC, U. S.) 292, 476 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    W. Gawlik, W. Jastrzebski, J. Szczepkowski, M. Witkowski, J. Zachorowski, and M. Zawada, Phys. Scr. 135, 014028 (2009).CrossRefGoogle Scholar
  17. 17.
    Yu. V. Likhanova, S. B. Medvedev, M. P. Fedoruk, and P. L. Chapovskii, JETP Lett. 103, 403 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, Science (Washington, DC, U. S.) 298, 2179 (2002).CrossRefGoogle Scholar
  19. 19.
    J. E. Thomas, J. Kinast, and A. Turlapov, Phys. Rev. Lett. 95, 120402 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    P. Dyke, K. Fenech, T. Peppler, M. G. Lingham, S. Hoinka, W. Zhang, S.-G. Peng, B. Mulkerin, H. Hu, X.-J. Liu, and C. J. Vale, Phys. Rev. A 93, 011603 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64, 012706 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    R. Combescot, X. Leyronas, and M. Yu. Kagan, Phys. Rev. A 73, 023618 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    G. Calvanese Strinati, P. Pieri, G. Röpke, P. Schuck, and M. Urban, Phys. Rep. 738, 1 (2018).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).MathSciNetGoogle Scholar
  25. 25.
    E. P. Gross, Nuovo Cimento 20, 454 (1961).CrossRefGoogle Scholar
  26. 26.
    M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Science (Washington, DC, U. S.) 335, 563 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    G. Zürn, T. Lompe, A. N. Wenz, S. Jochim, P. S. Julienne, and J. M. Hutson, Phys. Rev. Lett. 110, 135301 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    D. Bohm, Phys. Rev. 85, 166 (1952).ADSCrossRefGoogle Scholar
  29. 29.
    C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    Yu. Kagan, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 76, 2670 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    Y. E. Kim and A. L. Zubarev, Phys. Rev. A 70, 033612 (2004).ADSCrossRefGoogle Scholar
  32. 32.
    L. Salasnich and F. Toigo, Phys. Rev. A 78, 053626 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    L. P. Pitaevskii and A. Rosch, Phys. Rev. A 55, R853 (1997).ADSCrossRefGoogle Scholar
  34. 34.
    A. V. Turlapov and M. Yu. Kagan, J. Phys.: Condens. Matter 29, 383004 (2017).ADSGoogle Scholar
  35. 35.
    W. Y. Zhang, L. Zhou, and Y. L. Ma, Europhys. Lett. 88, 40001 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    V. Makhalov, K. Martiyanov, and A. Turlapov, Phys. Rev. Lett. 112, 045301 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Kapitza Institute for Physical Problems, Russian Academy of SciencesMoscowRussia
  3. 3.National Research University “Higher School of Economics”MoscowRussia

Personalised recommendations