Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 860–864 | Cite as

Algebraic Time Crystallization in a Two-Dimensional Superfluid

  • N. V. Prokof’evEmail author
  • B. V. SvistunovEmail author
Article
  • 9 Downloads

Abstract

Time crystallization is a hallmark of superfluidity, indicative of the fundamental fact that along with breaking the global U(1) symmetry, superfluids also break time-translation symmetry. While the standard discussion of the time crystallization phenomenon is based on the notion of the global phase and genuine condensate, for the superfluidity to take place in two dimensions an algebraic (topological) order is sufficient. We find that the absence of long-range order in a finite-temperature two-dimensional superfluid translates into algebraic time crystallization caused by the temporal phase correlations. The exponent controlling the algebraic decay is a universal function of the superfluid-stiffness-to-temperature ratio; this exponent can be also seen in the power-law singularity of the Fourier spectrum of the AC Josephson current. We elaborate on subtleties involved in defining the phenomenon of time crystallization in both classical-field and all-quantum cases and propose an experimental protocol in which the broken time translation symmetry—more precisely, temporal correlations of the relative phase, with all possible finite-size, dimensional, and quantum effects included—can be observed without permanently keeping two superfluids in a contact.

REFERENCES

  1. 1.
    F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    A. Shapere and F. Wilczek, Phys. Rev. Lett. 109, 160402 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    B. Svistunov, E. Babaev, and N. Prokof’ev, Superfluid States of Matter (Taylor and Francis, London, 2015).CrossRefzbMATHGoogle Scholar
  4. 4.
    B. D. Josephson, Phys. Lett. 1, 251 (1962).ADSCrossRefGoogle Scholar
  5. 5.
    H. Watanabe and M. Oshikawa, Phys. Rev. Lett. 114, 251603 (2015).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Y. Castin and J. Dalibard, Phys. Rev. A 55, 4330 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    V. L. Berezinskii, Sov. Phys. JETP 34, 610 (1972).ADSGoogle Scholar
  8. 8a.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 5, L124 (1972);ADSCrossRefGoogle Scholar
  9. 8b.
    J. Phys. C: Solid State Phys. 6, 1181 (1973).Google Scholar
  10. 9.
    A. A. Burkov, M. D. Lukin, and E. Demler, Phys. Rev. Lett. 98, 200404 (2007).ADSCrossRefGoogle Scholar
  11. 10.
    M. Hermele, G. Refael, M. P. A. Fisher, and P. M. Goldbart, Nat. Phys. 1, 117 (2005).CrossRefGoogle Scholar
  12. 11.
    Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, and J. Dalibard, Phys. Rev. Lett. 93, 180403 (2004).ADSCrossRefGoogle Scholar
  13. 12.
    S. Stock, Z. Hadzibabic, B. Battelier, M. Cheneau, and J. Dalibard, Phys. Rev. Lett. 95, 190403 (2005).ADSCrossRefGoogle Scholar
  14. 13.
    D. Husmann, S. Uchino, S. Krinner, M. Lebrat, T. Giamarchi, T. Esslinger, and J.-P. Brantut, Science (Washington, DC, U. S.) 350, 1498 (2015).ADSCrossRefGoogle Scholar
  15. 14.
    S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, and I. Bloch, Nat. Phys. 6, 998 (2010).CrossRefGoogle Scholar
  16. 15.
    W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Folling, L. Pollet, and M. Greiner, Science (Washington, DC, U. S.) 329, 547 (2010).ADSCrossRefGoogle Scholar
  17. 16.
    H. Kurkjian, Y. Castin, and A. Sinatra, C.R. Phys. 17, 789 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Physics, University of MassachusettsAmherstUSA
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia
  3. 3.Wilczek Quantum Center, School of Physics and Astronomy and T.D. Lee Institute, Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations