Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 948–957 | Cite as

Tetrads in Solids: from Elasticity Theory to Topological Quantum Hall Systems and Weyl Fermions

  • J. NissinenEmail author
  • G. E. Volovik
Article
  • 16 Downloads

Abstract

Theory of elasticity in topological insulators has many common features with relativistic quantum fields interacting with gravitational fields in the tetrad form. Here we discuss several issues in the effective topological (pseudo)electromagnetic response in three-dimensional weak crystalline topological insulators with no time-reversal symmetry that feature elasticity tetrads, including a mixed “axial-gravitational” anomaly. This response has some resemblance to “quasitopological” terms proposed for massless Weyl quasiparticles with separate, emergent fermion tetrads. As an example, we discuss the chiral/axial anomaly in superfluid 3He-A. We demonstrate the principal difference between the elasticity tetrads and the Weyl fermion tetrads in the construction of the topological terms in the action. In particular, the topological action expressed in terms of the elasticity tetrads cannot be expressed in terms of the Weyl fermion tetrads since in this case the gauge invariance is lost.

Notes

ACKNOWLEDGMENTS

This work has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement no. 694248).

REFERENCES

  1. 1.
    I. E. Dzyaloshinskii and G. E. Volovick, Ann. Phys. 125, 67 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Butterworth–Heinemann, London, 1986).Google Scholar
  3. 3.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Butterworth–Heinemann, London, 1980).Google Scholar
  4. 4.
    F. de Juan, A. Cortijo, and M. A. H. Vozmediano, Phys. Rev. B 76, 165409 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    F. de Juan, M. Sturla, and M. A. H. Vozmediano, Phys. Rev. Lett. 108, 227205 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    G. E. Volovik and M. A. Zubkov, Ann. Phys. 340, 352 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    A. Cortijo and M. A. Zubkov, Ann. Phys. 366, 45 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Burkov, Ann. Rev. Condens. Matter Phys. 9, 359 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    G. E. Volovik, JETP Lett. 46, 98 (1987).ADSGoogle Scholar
  11. 11.
    H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    C. D. Froggatt and H. B. Nielsen, Origin of Symmetry (World Scientific, Singapore, 1991).CrossRefGoogle Scholar
  13. 13.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).zbMATHGoogle Scholar
  14. 14.
    P. Horava, Phys. Rev. Lett. 95, 016405 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    J. Nissinen and G. E. Volovik, Phys. Rev. D 97, 025018 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    L. N. Chang C. Soo, Phys. Rev. D 53, 5682 (1996).Google Scholar
  17. 17.
    T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook, H. E. Hall, T. Vachaspati, and G. E. Volovik, Nature (London, U.K.) 386, 689 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    G. E. Volovik, JETP Lett. 44, 185 (1986).ADSGoogle Scholar
  19. 19.
    Ke He, Yayu Wang, and Qi-Kun Xue, Ann. Rev. Condens. Matter Phys. 9, 329 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    M. F. L. Golterman, K. Jansen, and D. B. Kaplan, Phys. Lett. B 301, 219 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    G. E. Volovik, JETP Lett. 107, 115 (2018).CrossRefGoogle Scholar
  22. 22.
    Z. V. Khaidukov and M. A. Zubkov, Phys. Rev. D 95, 074502 (2017).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    B. I. Halperin, Jpn. J. Appl. Phys. Suppl. 26, 1913 (1987).Google Scholar
  24. 24.
    K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    Q. Li, D. E. Kharzeev, C. Chang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Nat. Phys. 12, 550 (2016).CrossRefGoogle Scholar
  26. 26.
    N. Yamamoto, Phys. Rev. D 92, 085011 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    T. Giamarchi and P. le Doussalt, Phys. Rev. B 52, 1242 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    M. A. Bandres, M. C. Rechtsman, and M. Segev, Phys. Rev. X 6, 011016 (2016).Google Scholar
  29. 29.
    A. J. Beekman, J. Nissinen, K. Wu, and J. Zaanen, Phys. Rev. B 96, 165115 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    C. G. Callan and J. A. Harvey, Nucl. Phys. B 250, 427 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Ran, Y. Zhang, and A. Vishwanath, Nat. Phys. 5, 298 (2009).CrossRefGoogle Scholar
  32. 32.
    V. Juricic, A. Mesaros, R.-J. Slager, and J. Zaanen, Phys. Rev. Lett. 108, 106403 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    R.-J. Slager, A. Mesaros, V. Juricic, and J. Zaanen, Phys. Rev. B 90, 241403(R) (2014).Google Scholar
  34. 34.
    J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).Google Scholar
  35. 35.
    G. E. Volovik and V. S. Dotsenko, Jr., JETP Lett. 29, 576 (1979).ADSGoogle Scholar
  36. 36.
    O. Moritscht, M. Schweda, and T. Sommert, Class. Quantum Grav. 12, 2059 (1995).ADSCrossRefGoogle Scholar
  37. 37.
    A. A. Burkov, Phys. Rev. B 97, 165104 (2018).Google Scholar
  38. 38.
    F. Klinkhamer and G. Volovik, Int. J. Mod. Phys. A 20, 2795 (2005).ADSCrossRefGoogle Scholar
  39. 39.
    S. M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D 41, 1231 (1990).ADSCrossRefGoogle Scholar
  40. 40.
    M. Lorentz and P. Brun (for the H.E.S.S. Collab.), Europhys. J. Web of Conf. 136, 03018 (2017).CrossRefGoogle Scholar
  41. 41.
    S. T. Ramamurthy and T. L. Hughes, Phys. Rev. B 92, 085105 (2015).ADSCrossRefGoogle Scholar
  42. 42.
    F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004); arXiv:1401.0529 (2014).Google Scholar
  43. 43.
    E. Witten, arXiv:1510.07698 (2015).Google Scholar
  44. 44.
    H. T. Nieh and M. L. Yan, J. Math. Phys. (N.Y.) 23, 373 (1982).Google Scholar
  45. 45.
    N. Seiberg, E. Witten, Progr. Theor. Exp. Phys. 2016, 12C101 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Low Temperature Laboratory, Aalto University, P.O. Box 15100AaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsChernogolovkaRussia

Personalised recommendations