Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 851–859 | Cite as

Superfluid Liquid Crystals: Pasta Phases in Neutron Star Crusts

  • D. N. KobyakovEmail author
  • C. J. PethickEmail author
Article
  • 8 Downloads

Abstract

The pasta phases predicted to occur near the inner boundary of the crust of a neutron star resemble liquid crystals, a smectic A in the case of sheet-like nuclei (lasagna) and the columnar phase in the case of rod-like nuclei (spaghetti). An important difference compared with usual liquid crystals is that the nucleons are superfluid. We develop the hydrodynamic equations for this system and use them to study collective oscillations. Nucleon superfluidity leads to important qualitative differences in the spectra of these oscillations and also increases their frequencies compared with ordinary liquid crystals. We discuss a number of directions for future work.

Notes

ACKNOWLEDGMENTS

We are grateful to Gerd Schroder-Turk for informative discussions and Lev Pitaevskii for valuable correspondence. This work was supported by the Russian Foundation for Basic Research, according to the research project no. 31 16-32-60023 mol_a_dk.

REFERENCES

  1. 1.
    D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys. Rev. Lett. 50, 2066 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    M. Hashimoto, H. Seki, and M. Yamada, Prog. Theor. Phys. 71, 320 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    C. J. Pethick and D. G. Ravenhall, Ann. Rev. Nucl. Part. Sci. 45, 429 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    L. Di Gallo, M. Oertel, and M. Urban, Phys. Rev. C 84, 045801 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Univ. Press, Oxford, 1993).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, Oxford, 1987), Chap. 6.zbMATHGoogle Scholar
  7. 7.
    P. G. de Gennes, J. Phys. Suppl., Coll. C 430, 65 (1969).Google Scholar
  8. 8.
    P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev. A 6, 2401 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    C. J. Pethick, N. Chamel, and S. Reddy, Prog. Theor. Phys. Suppl. 186, 9 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    The anisotropy of the normal density has previously been pointed out by N. Martin and M. Urban, Phys. Rev. C 94, 065801 (2016).Google Scholar
  11. 11.
    A. F. Andreev and E. P. Bashkin, Sov. Phys. JETP 42, 164 (1976).ADSGoogle Scholar
  12. 12.
    P. G. de Gennes, The Physics of Liquid Crystals (Oxford Univ. Press, Oxford, 1974), Sect. 7.2.2.3.Google Scholar
  13. 13.
    L. Landau, J. Phys. USSR 5, 71 (1941).Google Scholar
  14. 14.
    D. K. Berry, M. E. Caplan, C. J. Horowitz, G. Huber, and A. S. Schneider, Phys. Rev. C 94, 055801 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    R. I. Epstein, Astrophys. J. 333, 880 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    P. Bedaque and S. Reddy, Phys. Lett. B 735, 340 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    D. N. Kobyakov and C. J. Pethick, Astrophys. J. 836, 203 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    C. J. Pethick and A. Y. Potekhin, Phys. Lett. B 427, 7 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    D. N. Kobyakov and C. J. Pethick, in preparation.Google Scholar
  20. 20.
    A. Caillé, C. R. Acad. Sci., Ser. B 274, 891 (1972), Sect. 22D.Google Scholar
  21. 21.
    G. Baym, B. Friman, and G. Grinstein, Nucl. Phys. B 210, 193 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    G. Watanabe and C. J. Pethick, Phys. Rev. Lett. 119, 062701 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    G. Grinstein and R. A. Pelcovits, Phys. Rev. Lett. 47, 856 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    R. D. Williams and S. E. Koonin, Nucl. Phys. A 435, 844 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    W. G. Newton and J. R. Stone, Phys. Rev. C 79, 055801 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    H. Pais and J. R. Stone, Phys. Rev. Lett. 109, 151101 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    B. Schuetrumpf, M. A. Klatt, K. Iida, G. E. Schröder-Turk, J. A. Maruhn, K. Mecke, and P.-G. Reinhard, Phys. Rev. C 91, 025801 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    F. Sébille, V. de la Mota, and S. Figerou, Phys. Rev. C 84, 055801 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    H. Sonoda, G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Phys. Rev. C 77, 035806 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    D. Durel and M. Urban, Phys. Rev. C 97, 065805 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.The Niels Bohr International Academy, The Niels Bohr Institute, University of CopenhagenCopenhagen ØDenmark
  3. 3.NORDITA, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden

Personalised recommendations