Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 812–825 | Cite as

Universal Phase Diagram and Scaling Functions of Imbalanced Fermi Gases

  • B. Frank
  • J. Lang
  • W. ZwergerEmail author
Article

Abstract

We discuss the phase diagram and the universal scaling functions of attractive Fermi gases at finite imbalance. The existence of a quantum multicritical point for the unitary gas at vanishing chemical potential μ and effective magnetic field h, first discussed by Nikolić and Sachdev, gives rise to three different phase diagrams, depending on whether the inverse scattering length 1/a is negative, positive or zero. Within a Luttinger–Ward formalism, the phase diagram and pressure of the unitary gas is calculated as a function of the dimensionless scaling variables T/μ and h/μ. The results indicate that beyond the Clogston–Chandrasekhar limit at (h/μ)c ≃ 1.09, the unitary gas exhibits an inhomogeneous superfluid phase with FFLO order that can reach critical temperatures near unitarity of ≃0.03TF .

REFERENCES

  1. 1.
    M. Randeria and E. Taylor, Ann. Rev. Condens. Matter Phys. 5, 209 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    M. W. Zwierlein, in Novel Superfluids, Ed. by K. H. Bennemann and J. B. Ketterson (Oxford Scientific, Oxford, 2014), Vol. 2, p. 269.Google Scholar
  3. 3.
    W. Zwerger, in Quantum Matter at Ultralow Temperatures, Proceedings of the 191st Course of International School of Physics Enrico Fermi, Varenna, July 2014, Ed. by M. Inguscio, W. Ketterle, S. Stringari, and G. Roati (IOS, Amsterdam, 2016), p. 63.Google Scholar
  4. 4.
    Y. Nishida and D. T. Son, Phys. Rev. D 76, 086004 (2007).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    D. T. Son, Phys. Rev. Lett. 98, 020604 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    F. Werner and Y. Castin, Phys. Rev. A 74, 053604 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    L. P. Pitaevskii and A. Rosch, Phys. Rev. A 55, R853 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    F. Chevy and C. Mora, Rep. Prog. Phys. 73, 112401 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    The BCS–BEC Crossover and the Unitary Fermi Gas, Ed. by W. Zwerger, Lect. Notes Phys. 836, 1 (2012).Google Scholar
  11. 11.
    L. Radzihovsky, Phys. Rev. A 84, 023611 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964).ADSCrossRefGoogle Scholar
  13. 13.
    A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1964).Google Scholar
  14. 14.
    D. T. Son and M. A. Stephanov, Phys. Rev. A 74, 013614 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    A. Bulgac and M. M. Forbes, Phys. Rev. Lett. 101, 215301 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger, Phys. Rev. A 75, 023610 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    B. Mukherjee, Z. Yan, P. B. Patel, et al., Phys. Rev. Lett. 118, 123401 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    G. F. Gribakin and V. V. Flambaum, Phys. Rev. A 48, 546 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    R. Schmidt, S. P. Rath, and W. Zwerger, Eur. Phys. J. B 85, 386 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    K. Goral, T. Kohler, S. A. Gardiner, E. Tiesinga, and P. S. Julienne, J. Phys. B 37, 3457 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 59, 1998 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    F. Werner, L. Tarruell, and Y. Castin, Eur. Phys. J. B 68, 401 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 96, 060401 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    S. Sachdev, Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, UK, 2011).CrossRefzbMATHGoogle Scholar
  26. 26.
    D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    K. Van Houcke, F. Werner, E. Kozik, et al., Nat. Phys. 8, 366 (2012).CrossRefGoogle Scholar
  28. 28.
    M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Science 335, 563 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Nishida and D. T. Son, Lect. Notes Phys. 836, 233 (2012).Google Scholar
  30. 30.
    Y. Nishida, Phys. Rev. A 79, 013627 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    G. Zurn, T. Lompe, A. N. Wenz, et al., Phys. Rev. Lett. 110, 135301 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    A. Bulgac and M. M. Forbes, Phys. Rev. A 75, 031605 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    F. Chevy, Phys. Rev. A 74, 063628 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. A 71, 012708 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    N. Prokof’ev and B. Svistunov, Phys. Rev. B 77, 020408 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    G. B. Partridge, W. Li, R. I. Kamar, et al., Science 311, 503 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311, 492 (2006).ADSCrossRefGoogle Scholar
  39. 39.
    S. Sachdev and K. Yang, Phys. Rev. B 73, 174504 (2006).ADSCrossRefGoogle Scholar
  40. 40.
    M. M. Parish, F. M. Marchetti, A. Lamacraft, and B. D. Simons, Nat. Phys. 3, 124 (2007).CrossRefGoogle Scholar
  41. 41.
    D. E. Sheehy and L. Radzihovsky, Ann. Phys. 322, 1790 (2007).ADSCrossRefGoogle Scholar
  42. 42.
    M. Y. Kagan and A. V. Chubukov, JETP Lett. 50, 483 (1989).Google Scholar
  43. 43.
    M. A. Baranov, Y. Kagan, and M. Y. Kagan, JETP Lett. 64, 273 (1996).Google Scholar
  44. 44.
    K. R. Patton and D. E. Sheehy, Phys. Rev. A 83, 051607 (2011).ADSCrossRefGoogle Scholar
  45. 45.
    S. Nascimbene, N. Navon, S. Pilati, et al., Phys. Rev. Lett. 106, 215303 (2011).ADSCrossRefGoogle Scholar
  46. 46.
    B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).ADSCrossRefGoogle Scholar
  47. 47.
    A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).ADSCrossRefGoogle Scholar
  48. 48.
    L. P. Gor’kov and T. K. Melik-Barkhudarov, Zh. Eskp. Theor. Fiz. 40, 1452 (1961).Google Scholar
  49. 49.
    T. Enss, Phys. Rev. A 86, 013616 (2012).ADSCrossRefGoogle Scholar
  50. 50.
    M. Punk, P. T. Dumitrescu, and W. Zwerger, Phys. Rev. A 80, 053605 (2009).ADSCrossRefGoogle Scholar
  51. 51.
    S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).ADSCrossRefGoogle Scholar
  52. 52.
    R. Haussmann, M. Punk, and W. Zwerger, Phys. Rev. A 80, 063612 (2009).ADSCrossRefGoogle Scholar
  53. 53.
    S. Pilati and S. Giorgini, Phys. Rev. Lett. 100, 030401 (2008).ADSCrossRefGoogle Scholar
  54. 54.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975).Google Scholar
  55. 55.
    J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    G. V. Haines and A. G. Jones, Geophys. J. 92, 171 (1988).ADSCrossRefGoogle Scholar
  58. 58.
    C. Lobo, A. Recati, S. Giorgini, and S. Stringari, Phys. Rev. Lett. 97, 200403 (2006).ADSCrossRefGoogle Scholar
  59. 59.
    I. Boettcher J. Braun, T. K. Herbst, et al., Phys. Rev. A 91, 013610 (2015).Google Scholar
  60. 60.
    M. Y. Veillette, D. E. Sheehy, and L. Radzihovsky, Phys. Rev. A 75, 043614 (2007).ADSCrossRefGoogle Scholar
  61. 61.
    Y. Nishida and D. T. Son, Phys. Rev. A 75, 063617 (2007).ADSCrossRefGoogle Scholar
  62. 62.
    Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, Nature 451, 689 (2008).ADSCrossRefGoogle Scholar
  63. 63.
    N. Navon, S. Nascimbene, F. Chevy, and C. Salomon, Science 328, 729 (2010).ADSCrossRefGoogle Scholar
  64. 64.
    R. Haussmann, Phys. Rev. B 49, 12975 (1994).ADSCrossRefGoogle Scholar
  65. 65.
    S. Tan, Ann. Phys. 12, 2952 (2008).ADSCrossRefGoogle Scholar
  66. 66.
    S. Tan, Ann. Phys. 12, 2987 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Physik-Department, Technische Universität MünchenGarchingGermany

Personalised recommendations