Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 5, pp 933–938 | Cite as

Analog of the Anderson Theorem for the Polar Phase of Liquid 3He in a Nematic Aerogel

  • I. A. Fomin
Article
  • 5 Downloads

Abstract

The effect of an aerogel with parallel fibers on the temperatures of 3He transition to superfluid phases differing in the lz projections of the orbital angular momentum on the directions of the fibers is considered. It is shown that at the specular reflection of Fermi excitations of liquid 3He from the fibers, the temperature of transition to the polar phase corresponding to lZ = 0 remains the same as the temperature of transition to any phase with orbital angular momentum l = 1 in the absence of the aerogel. The temperature of transition into phases with lz = ±1 turns out to be lower, and there appears to be a finite temperature interval in which only the polar phase is stable. This interval has been determined. The effect of the magnetic (exchange) scattering of Fermi excitations at adsorbed 3He atoms on the temperature of transition of 3He to the superfluid state has been estimated.

Notes

ACKNOWLEDGMENTS

I am grateful to V.V. Dmitriev for fruitful discussions and constructive critical remarks.

This study was performed within the Program of the Presidium of the Russian Academy of Sciences no. 1.4 “Topical Problems in Low-Temperature Physics.”

REFERENCES

  1. 1.
    A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 9, 220 (1959).Google Scholar
  2. 2.
    P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).ADSCrossRefGoogle Scholar
  3. 3.
    A. I. Larkin, JETP Lett. 2, 130 (1965).ADSGoogle Scholar
  4. 4.
    A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 12, 1243 (1960).Google Scholar
  5. 5.
    A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 8, 1090 (1958).Google Scholar
  6. 6.
    K. Aoyama and R. Ikeda, Phys. Rev. B 73, 060504 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Dmitriev, A. A. Senin, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 115, 165304 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    V. E. Asadchikov, R. Sh. Askhadullin, V. V. Volkov, V. V. Dmitriev, N. K. Kitaeva, P. N. Martynov, A. A. Osipov, A. A. Senin, A. A. Soldatov, D. I. Chekrygina, and A. N. Yudin, JETP Lett. 101, 556 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    D. Kim, M. Nakamura, O. Ishikawa, T. Hata, T. Kodama, and H. Kojima, Phys. Rev. Lett. 71, 1581 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Dmitriev, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 120, 075301 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    I. A. Fomin and E. V. Surovtsev, JETP Lett. 97, 644 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    I. A. Fomin, J. Exp. Theor. Phys. 118, 765 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    E. Collin, S. Triqueneaux, Yu. M. Bunkov, and H. Godfrin, Phys. Rev. B 80, 094422 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. A. Fomin
    • 1
  1. 1.Kapitza Institute for Physical Problems, Russian Academy of SciencesMoscowRussia

Personalised recommendations