Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 4, pp 791–796 | Cite as

Dark Conductivity and Photoconductivity of Nonaqueous Liposomes: a New Method for Measuring the Phase-Transition Temperatures of Lipid Membranes

  • S. V. Yablonskii
  • V. V. Bodnarchuk
STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • 8 Downloads

Abstract

A new method is developed to measure the phase-transition temperatures in artificial phospholipid membranes. This method is based on studying the temperature dependence of dark conductivity and photoconductivity in a symmetric cell with current-conducting indium–tin oxide (ITO) electrodes. Internal electron photoemission into a thin liposome layer is induced by visible and near IR light from the ITO electrodes. This method is applied to study the lyotropic phases in 1,2-dipalmitoyl-rac-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) with ethylene glycol (EG) and glycerol (G). The results of time-of-flight measurements are used to calculate the carrier mobilities in liposome vesicles. The measurement results are compared with the results obtained by dc conductometry. We are the first to detect the effect of a positive temperature coefficient of resistivity in a liquid-crystal phase. The proposed method makes it possible to detect the phase transitions in lyotropic liquid-crystal systems and, hence, can be used to create biocompatible drug carriers based on thermosensitive liposomes.

Notes

REFERENCES

  1. 1.
    A. Antonella and M. Giancarlo, Peptide Sci. 104, 462 (2015).CrossRefGoogle Scholar
  2. 2.
    J. A. Allen, R. A. Halverson-Tamboli, and M. M. Rasenick, Nat. Publ. Group 8, 128 (2007).Google Scholar
  3. 3.
    V. F. Antonov, V. V. Petrov, A. A. Molnar, D. A. Predvoditelev, and A. S. Ivanov, Nature (London, U.K.) 283, 585 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    A. G. Petrov, A. T. Todorov, B. Bonev, L. M. Blinov, S. V. Yablonski, D. B. Subachyus, and N. Tsvetkova, Ferroelectrics 114, 415 (1991).CrossRefGoogle Scholar
  5. 5.
    J. Harden, N. Diorio, A. G. Petrov, and A. Jakli, Phys. Rev. E 79, 011701 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    S. V. Yablonskii and L. M. Blinov, Sov. Tech. Phys. Lett. 10, 639 (1984).Google Scholar
  7. 7.
    S. V. Yablonskii and V. V. Bodnarchuk, Zhidk. Krist. Prakt. Ispol’z. 17 (4), 106 (2017).Google Scholar
  8. 8.
    K. Muldrew, Cryobiology: A Short Course (Univ. Calgary, Canada, 1999).Google Scholar
  9. 9.
    Yu. V. Pleskov, A. R. Tameev, V. P. Varnin, I. G. Teremetskaya, and A. M. Baranov, Semiconductors 31, 980 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    S. Ramo, Proc. IRE 27, 584 (1939).Google Scholar
  11. 11.
    W. Shockley, J. Appl. Phys. 9, 635 (1938).ADSCrossRefGoogle Scholar
  12. 12.
    I. Adamchevskii, Electrical Conductivity of Liquid Dielectrics (Energiya, Leningrad, 1972) [in Russian].Google Scholar
  13. 13.
    W. Heywang, Solid State Electron. 3, 51 (1961). doi 10.1016/0038-1101(61)90080-6ADSCrossRefGoogle Scholar
  14. 14.
    S. V. Yablonskii, V. V. Bodnarchuk, V. V. Grebenev, and A. R. Geivandov, in Proceedings of the 27th International Liquid Crystal Conference ILCC 2018 (in press).Google Scholar
  15. 15.
    J. P. Dilger, G. McLaughlin, T. J. McIntosh, and S. A. Simon, Science (Washington, DC, U. S.) 206 (4423), 1196 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    N. Bjerrum, Science (Washington, DC, U. S.) 115, 385 (1952).ADSCrossRefGoogle Scholar
  17. 17.
    L. M. Blinov, S. A. Davidyan, A. G. Petrov, A. T. Todorov, and S. V. Yablonskii, JETP Lett. 48, 285 (1988).ADSGoogle Scholar
  18. 18.
    S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981; Gordon and Breach, London, 1991).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Shubnikov Institute of Crystallography, FSRC Crystallography and Photonics, Russian Academy of SciencesMoscowRussia

Personalised recommendations