Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 6, pp 1087–1111 | Cite as

The Second Boundaries of Stability Zones and the Angular Diagrams of Conductivity for Metals Having Complicated Fermi Surfaces

  • A. Ya. MaltsevEmail author
ELECTRONIC PROPERTIES OF SOLID
  • 28 Downloads

Abstract

We consider some general aspects of dependence of magneto-conductivity on a magnetic field in metals having complicated Fermi surfaces. As it is well known, a nontrivial behavior of conductivity in metals in strong magnetic fields is connected usually with appearance of non-closed quasiclassical electron trajectories on the Fermi surface in a magnetic field. The structure of the electron trajectories depends strongly on the direction of the magnetic field and usually the greatest interest is caused by open trajectories that are stable to small rotations of the direction of B. The geometry of the corresponding Stability Zones on the angular diagram in the space of directions of B represents a very important characteristic of the electron spectrum in a metal linking the parameters of the spectrum to the experimental data. Here we will consider some very general features inherent in the angular diagrams of metals with Fermi surfaces of the most arbitrary form. In particular, we will show here that any Stability Zone actually has a second boundary, restricting a larger region with a certain behavior of conductivity. Besides that, we shall discuss here general questions of complexity of the angular diagrams for the conductivity and propose a theoretical scheme for dividing the angular diagrams into “simple” and “complex” diagrams. The proposed scheme will in fact also be closely related to behavior of the Hall conductivity in a metal in strong magnetic fields. In conclusion, we will also discuss the relationship of the questions under consideration to the general features of an (abstract) angular diagram describing the behavior of quasiclassical electron trajectories at all energy levels in the conduction band.

REFERENCES

  1. 1.
    I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Sov. Phys. JETP 4, 41 (1956).Google Scholar
  2. 2.
    I. M. Lifshits and V. G. Peschanskii, Sov. Phys. JETP 8, 875 (1958).Google Scholar
  3. 3.
    I. M. Lifshits and V. G. Peschanskii, Sov. Phys. JETP 11, 137 (1960).Google Scholar
  4. 4.
    I. M. Lifshits and M. I. Kaganov, Sov. Phys. Usp. 2, 831 (1959).ADSCrossRefGoogle Scholar
  5. 5.
    I. M. Lifshits and M. I. Kaganov, Sov. Phys. Usp. 5, 878 (1962).ADSCrossRefGoogle Scholar
  6. 6.
    I. M. Lifshits and M. I. Kaganov, Sov. Phys. Usp. 8, 805 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electronic Theory of Metals (Nauka, Moscow, 1971) [in Russian].zbMATHGoogle Scholar
  8. 8.
    M. I. Kaganov and V. G. Peschansky, Phys. Rep. 372, 445 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    S. P. Novikov, Russ. Math. Surv. 37, 1 (1982).CrossRefGoogle Scholar
  10. 10.
    A. V. Zorich, Russ. Math. Surv. 39, 287 (1984).CrossRefGoogle Scholar
  11. 11.
    I. A. Dynnikov, Russ. Math. Surv. 47, 172 (1992).CrossRefGoogle Scholar
  12. 12.
    S. P. Tsarev, private commun. (1992–1993).Google Scholar
  13. 13.
    I. A. Dynnikov, Mat. Zam. 53, 57 (1993).Google Scholar
  14. 14.
    I. A. Dynnikov, Amer. Math. Soc. Transl., Ser. 2 179, 45 (1997).MathSciNetGoogle Scholar
  15. 15.
    S. P. Novikov and A. Ya. Mal’tsev, JETP Lett. 63, 855 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    A. Ya. Maltsev and S. P. Novikov, Bull. Braz. Math. Soc., New Ser. 34, 171 (2003).Google Scholar
  17. 17.
    A. Ya. Maltsev and S. P. Novikov, J. Stat. Phys. 115, 31 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    I. A. Dynnikov, Russ. Math. Surv. 54, 21 (1999).MathSciNetCrossRefGoogle Scholar
  19. 19.
    R. de Leo, Phys. B (Amsterdam, Neth.) 362, 62 (2005).Google Scholar
  20. 20.
    S. P. Novikov and A. Ya. Mal’tsev, Phys. Usp. 41, 231 (1998).CrossRefGoogle Scholar
  21. 21.
    A. Ya. Maltsev, J. Exp. Theor. Phys. 85, 934 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    A. Ya. Maltsev, J. Exp. Theor. Phys. 124, 805 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    R. N. Gurzhi and A. I. Kopeliovich, in Conductivity Electrons, Collection of Articles, Ed. by M. I. Kaganov and V. S. Edel’man (Nauka, Moscow, 1985) [in Russian].Google Scholar
  24. 24.
    A. Ya. Maltsev, J. Exp. Theor. Phys. 125, 896 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    M. Ya. Azbel’ and E. A. Kaner, Sov. Phys. JETP 5, 730 (1957).Google Scholar
  26. 26.
    Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996; Fizmatgiz, Moscow, 1963).Google Scholar
  27. 27.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972).CrossRefzbMATHGoogle Scholar
  28. 28.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).Google Scholar
  29. 29.
    A. V. Zorich, in Proceedings of the Geometric Study of Foliations, Tokyo, 1993, Ed. by T. Mizutani et al. (World Scientific, River Edge, NJ, 1994).Google Scholar
  30. 30.
    A. V. Zorich, Ann. Inst. Fourier 46, 325 (1996).CrossRefGoogle Scholar
  31. 31.
    A. Zorich, Amer. Math. Soc. Transl., Ser. 2 179, 173 (1997).Google Scholar
  32. 32.
    A. Zorich, Ergodic Theory Dynamical Syst. 17, 1477 (1997).CrossRefGoogle Scholar
  33. 33.
    A. Zorich, Amer. Math. Soc. Transl., Ser. 2 197, 135 (1999).MathSciNetGoogle Scholar
  34. 34.
    R. de Leo, Russ. Math. Surv. 55, 166 (2000).MathSciNetCrossRefGoogle Scholar
  35. 35.
    R. de Leo, Usp. Mat. Nauk 58, 197 (2003).MathSciNetCrossRefGoogle Scholar
  36. 36.
    R. De Leo, Exp. Math. 15, 109 (2006).CrossRefGoogle Scholar
  37. 37.
    A. Zorich, in Frontiers in Number Theory, Physics and Geometry, Vol. 1: On Random Matrices, Zeta Functions and Dynamical Systems, Ecole de physique des Houches, France, March 9–21, 2003, Ed. by P. Cartier, B. Julia, P. Moussa, and P. Vanhove (Springer, Berlin, 2006), p. 439.Google Scholar
  38. 38.
    R. de Leo and I. A. Dynnikov, Russ. Math. Surv. 62, 990 (2007).CrossRefGoogle Scholar
  39. 39.
    R. de Leo and I. A. Dynnikov, Geom. Dedicata 138, 51 (2009).MathSciNetCrossRefGoogle Scholar
  40. 40.
    A. Skripchenko, Discrete Contin. Dyn. Sys. 32, 643 (2012).MathSciNetGoogle Scholar
  41. 41.
    A. Skripchenko, Ann. Glob. Anal. Geom. 43, 253 (2013).MathSciNetCrossRefGoogle Scholar
  42. 42.
    I. Dynnikov and A. Skripchenko, Am. Math. Soc. Transl., Ser. 2 234, 173 (2014); arXiv:1309.4884.Google Scholar
  43. 43.
    I. Dynnikov and A. Skripchenko, Trans. Moscow Math. Soc. 76, 287 (2015).CrossRefGoogle Scholar
  44. 44.
    A. Avila, P. Hubert, and A. Skripchenko, Invent. Math. 206, 109 (2016).ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Avila, P. Hubert, and A. Skripchenko, Bull. Soc. Math. France 144, 539 (2016).MathSciNetCrossRefGoogle Scholar
  46. 46.
    R. de Leo, arXiv:1711.01716.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovka, Moscow oblastRussia

Personalised recommendations