Journal of Experimental and Theoretical Physics

, Volume 127, Issue 4, pp 742–752 | Cite as

Effect of Cr Spacer on Structural and Magnetic Properties of Fe/Gd Multilayers

  • A. B. DrovosekovEmail author
  • M. V. RyabukhinaEmail author
  • D. I. Kholin
  • N. M. Kreines
  • E. A. Manuilovich
  • A. O. Savitsky
  • E. A. Kravtsov
  • V. V. Proglyado
  • V. V. Ustinov
  • T. Keller
  • Yu. N. Khaydukov
  • Y. Choi
  • D. Haskel


In this work, we analyze the role of a thin Cr spacer between Fe and Gd layers on the structure and magnetic properties of a [Fe(35 Å)/Cr(tCr)/Gd(50 Å)/Cr(tCr)]12 superlattice. Samples without the Cr spacer (tCr = 0) and with a thin spacer (tCr = 4 Å) are investigated using X-ray diffraction, polarized neutron and resonance X-ray magnetic reflectometry, static magnetometry, magneto-optical Kerr effect, and ferromagnetic resonance techniques. Magnetic properties are studied experimentally in a wide temperature range 4–300 K and analyzed theoretically using numerical simulation on the basis of the mean-field model. We show that a reasonable agreement with the experimental data can be obtained considering temperature dependence of the effective field parameter in gadolinium layers. The analysis of the experimental data shows that besides a strong reduction of the antiferromagnetic coupling between Fe and Gd, the introduction of Cr spacers into Fe/Gd superlattice leads to modification of both structural and magnetic characteristics of the ferromagnetic layers.



PNR experiments were performed at the NREX instrument operated by the Max–Planck Society at the Heinz Maier–Leibnitz Zentrum (MLZ), Garching, Germany.

Work at APS is supported by the U.S. Department of Energy (DOE), Office of Science, under Contract no. DE-AC02-06CH11357.

Research in Yekaterinburg was performed in terms of the state assignment of Federal Agency of Scientific Organizations of the Russian Federation (theme “Spin” no. AAAA-A18-118020290104-2). X-ray diffraction measurements were performed at the Collective Use Center of IMP.

The work is partially supported by the Russian Foundation for Basic Research (grants no. 16-02-00061, no. 18-37-00182) and by the Ministry of Education and Science of the Russian Federation (grant no. 14-Z-50.31.0025).

We would like to thank A.A. Mukhin, V.Yu. Ivanov, and A.M. Kuz’menko (GPI RAS) for assistance in performing measurements on a SQUID magnetometer.


  1. 1.
    R. E. Camley, in Magnetism of Surfaces, Interfaces, and Nanoscale Materials, Vol. 5 of Handbook of Surface Science, Ed. by R. E. Camley, Z. Celinski, and R. L. Stamps (Elsevier, North-Holland, 2015).Google Scholar
  2. 2.
    R. E. Camley and R. L. Stamps, J. Phys.: Condens. Matter 5, 3727 (1993).ADSGoogle Scholar
  3. 3.
    R. E. Camley and D. R. Tilley, Phys. Rev. B 37, 3413 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    R. E. Camley, Phys. Rev. B 39, 12316 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    J. G. LePage and R. E. Camley, Phys. Rev. Lett. 65, 1152 (1990).ADSCrossRefGoogle Scholar
  6. 6.
    R. E. Camley, in Ultrathin Films, Multilayers and Nanostructures, Nanomagnetism, Ed. by D. L. Mills and J. A. C. Bland (Elsevier, Amsterdam, 2006), Vol. 1.Google Scholar
  7. 7.
    R. E. Camley, Phys. Rev. B 35, 3608 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    N. Ishimatsu, H. Hashizume, S. Hamada, N. Hosoito, C. S. Nelson, C. T. Venkataraman, G. Srajer, and J. C. Lang, Phys. Rev. B 60, 9596 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    N. Hosoito, H. Hashizume, N. Ishimatsu, I.-T. Bae, G. Srajer, J. C. Lang, C. T. Venkataraman, and C. S. Nelson, Jpn. J. Appl. Phys. 41, 1331 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    D. Haskel, G. Srajer, J. C. Lang, J. Pollmann, C. S. Nelson, J. S. Jiang, and S. D. Bader, Phys. Rev. Lett. 87, 207201 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Choi, D. Haskel, R. E. Camley, D. R. Lee, J. C. Lang, G. Srajer, J. S. Jiang, and S. D. Bader, Phys. Rev. B 70, 134420 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    E. Kravtsov, D. Haskel, S. G. E. te Velthuis, J. S. Jiang, and B. J. Kirby, Phys. Rev. B 79, 134438 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    S. A. Montoya, S. Couture, J. J. Chess, J. C. T. Lee, N. Kent, D. Henze, S. K. Sinha, M.-Y. Im, S. D. Kevan, P. Fischer, B. J. McMorran, V. Lomakin, S. Roy, and E. E. Fullerton, Phys. Rev. B 95, 024415 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    S. A. Montoya, S. Couture, J. J. Chess, J. C. T. Lee, N. Kent, M.-Y. Im, S. D. Kevan, P. Fischer, B. J. Mc-Morran, S. Roy, V. Lomakin, and E. E. Fullerton, Phys. Rev. B 95, 224405 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlir, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, Nat. Mater. 13, 286 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    R. Chimata, L. Isaeva, K. Kadas, A. Bergman, B. Sanyal, J. H. Mentink, M. I. Katsnelson, T. Rasing, A. Kirilyuk, A. Kimel, O. Eriksson, and M. Pereiro, Phys. Rev. B 92, 094411 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    C. Xu, T. A. Ostler, and R. W. Chantrell, Phys. Rev. B 93, 054302 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    G. Scheunert, O. Heinonen, R. Hardeman, A. Lapicki, M. Gubbins, and R. M. Bowman, Appl. Phys. Rev. 3, 011301 (2016).CrossRefGoogle Scholar
  19. 19.
    B. Sanyal, C. Antoniak, T. Burkert, B. Krumme, A. Warland, F. Stromberg, C. Praetorius, K. Fauth, H. Wende, and O. Eriksson, Phys. Rev. Lett. 104, 156402 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    F. Stromberg, C. Antoniak, U. von Horsten, W. Keune, B. Sanyal, O. Eriksson, and H. Wende, J. Phys. D: Appl. Phys. 44, 265004 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, E. A. Kravtsov, D. V. Blagodatkov, M. V. Ryabukhina, M. A. Milyaev, V. V. Ustinov, E. M. Pashaev, I. A. Subbotin, and G. V. Prutskov, J. Exp. Theor. Phys. 120, 1041 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    Li Sun, Wen Zhang, Ping Kwan Johnny Wong, Yuli Yin, Sheng Jiang, Zhaocong Huang, Ya Zhai, Zhongyu Yao, Jun Du, Yunxia Sui, and Hongru Zhai, J. Magn. Magn. Mater. 451, 480 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    C. Ward, G. Scheunert, W. R. Hendren, R. Hardeman, M. A. Gubbins, and R. M. Bowman, Appl. Phys. Lett. 102, 092403 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    G. Scheunert, W. R. Hendren, C. Ward, and R. M. Bowman, Appl. Phys. Lett. 101, 142407 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    M. V. Ryabukhina, E. A. Kravtsov, L. I. Naumova, V. V. Proglyado, Yu. N. Khaidukov, and V. V. Ustinov, Phys. Met. Metallogr. 118, 143 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    Modern Techniques for Characterizing Magnetic Materials, Ed. by Y. Zhu (Springer, New York, 2005).Google Scholar
  27. 27.
    C. Dufour, K. Cherifi, G. Marchal, Ph. Mangin, and M. Hennion, Phys. Rev. B 47, 14572 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    W. Hahn, M. Loewenhaupt, Y. Y. Huang, G. P. Felcher, and S. S. P. Parkin, Phys. Rev. B 52, 16041 (1995).ADSCrossRefGoogle Scholar
  29. 29.
    O. F. K. McGrath, N. Ryzhanova, C. Lacroix, D. Givord, C. Fermon, C. Miramond, G. Saux, S. Young, and A. Vedyayev, Phys. Rev. B 54, 6088 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    S. Roy, M. R. Fitzsimmons, S. Park, M. Dorn, O. Petracic, I. V. Roshchin, Zhi-Pan Li, X. Batlle, R. Morales, A. Misra, X. Zhang, K. Chesnel, J. B. Kortright, S. K. Sinha, and I. K. Schuller, Phys. Rev. Lett. 95, 047201 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, E. A. Kravtsov, M. V. Ryabukhina, V. V. Proglyado, and V. V. Ustinov, J. Phys.: Condens. Matter 29, 115802 (2017).ADSGoogle Scholar
  32. 32.
    P. N. Lapa, J. Ding, J. E. Pearson, V. Novosad, J. S. Jiang, and A. Hoffmann, Phys. Rev. B 96, 024418 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    T. D. C. Higgs, S. Bonetti, H. Ohldag, N. Banerjee, X. L. Wang, A. J. Rosenberg, Z. Cai, J. H. Zhao, K. A. Moler, and J. W. A. Robinson, Sci. Rep. 6, 30092 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    K. Takanashi, Y. Kamiguchi, H. Fujimori, and M. Motokawa, J. Phys. Soc. Jpn. 61, 3721 (1992).ADSCrossRefGoogle Scholar
  35. 35.
    N. Hosoito, H. Hashizume, and N. Ishimatsu, J. Phys.: Condens. Matter 14, 5289 (2002).ADSGoogle Scholar
  36. 36.
    J. C. Lang and G. Srajer, Rev. Sci. Instrum. 66, 1540 (1995).ADSCrossRefGoogle Scholar
  37. 37.
    D. Haskel, E. Kravtsov, Y. Choi, J. C. Lang, Z. Islam, G. Srajer, J. S. Jiang, S. D. Bader, and P. C. Canfield, Eur. Phys. J. Spec. Top. 208, 141 (2012).CrossRefGoogle Scholar
  38. 38.
    H. E. Nigh, S. Legvold, and F. H. Spedding, Phys. Rev. 132, 1092 (1963).ADSCrossRefGoogle Scholar
  39. 39.
    M. Romera, M. Munoz, M. Maicas, J. M. Michalik, J. M. de Teresa, C. Magen, and J. L. Prieto, Phys. Rev. B 84, 094456 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    S. Handschuh, J. Landes, U. Kobler, Ch. Sauer, G. Kisters, A. Fuss, and W. Zinn, J. Magn. Magn. Mater. 119, 254 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. B. Drovosekov
    • 1
    Email author
  • M. V. Ryabukhina
    • 2
    Email author
  • D. I. Kholin
    • 1
  • N. M. Kreines
    • 1
  • E. A. Manuilovich
    • 1
    • 3
  • A. O. Savitsky
    • 1
    • 4
  • E. A. Kravtsov
    • 2
    • 5
  • V. V. Proglyado
    • 2
  • V. V. Ustinov
    • 2
    • 5
  • T. Keller
    • 6
    • 7
  • Yu. N. Khaydukov
    • 6
    • 7
  • Y. Choi
    • 8
  • D. Haskel
    • 8
  1. 1.Kapitza Institute for Physical Problems, Russian Academy of SciencesMoscowRussia
  2. 2.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  4. 4.Institute of Solid State Physics, Russian Academy of SciencesChernogolovkaRussia
  5. 5.Ural Federal UniversityYekaterinburgRussia
  6. 6.Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1StuttgartGermany
  7. 7.Max Planck Society Outstation at the Heinz Maier-Leibnitz Zentrum (MLZ)GarchingGermany
  8. 8.Advanced Photon Source, Argonne National LaboratoryArgonneUSA

Personalised recommendations