Journal of Experimental and Theoretical Physics

, Volume 127, Issue 4, pp 608–619 | Cite as

Electrodynamic Calculation of Effective Electromagnetic Parameters of a Dielectric Medium with Metallic Nanoparticles of a Given Size

  • B. A. Belyaev
  • V. V. Tyurnev


The frequency dependence of the effective complex permittivity and effective complex permeability of a heterostructure based on a dielectric medium containing metallic nanoparticles of spherical shape is calculated by an original method. In contrast to the Bruggeman [21] and the Maxwell Garnett [17] approaches, which use the quasi-static approximation in calculations, a nonuniform distribution of electromagnetic fields inside metallic particles is calculated, which allows the analysis of the electromagnetic parameters of the heterostructure not only as a function of frequency but also as a function of the nanoparticle size. It is shown that the plasmon resonant frequency decreases with increasing both the size and the concentration of particles in the heterostructure. It is also shown that a dielectric medium containing nonmagnetic metallic nanoparticles exhibits diamagnetic properties. In this case, the position of the maximum on the frequency dependence of the imaginary part of the magnetic susceptibility coincides with the relaxation frequency of charge carriers. The calculated spectra of the real and imaginary components of the permittivity of the heterostructure with a size of metallic particles less than 10 nm are in good agreement with Bruggeman calculations; however, the agreement with Maxwell Garnett calculations is observed only at nanoparticle concentrations lower than 10–6.



This work was supported by the Ministry of Education and Science of the Russian Federation (contract no. 14.575.21.0142; unique identifier of the project is RFMEFI57517X0142).


  1. 1.
    M. Mishra and P. Chauhan, J. Nanomed. Res. 2, 00039 (2015).Google Scholar
  2. 2.
    H. Malekzad, P. S. Zangabad, H. Mirshekari, et al., Nanotechnol. Rev. 6, 301 (2017).CrossRefGoogle Scholar
  3. 3.
    M. R. Díaz and P. E. Vivas-Mejia, Pharmaceuticals 6, 1361 (2013).CrossRefGoogle Scholar
  4. 4.
    A. A. Zabolotskii, J. Exp. Theor. Phys. 119, 614 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    W. Jacak, J. Krasnyj, J. Jacak et al., J. Appl. Phys. 107, 124317 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    B. A. Belyaev and V. V. Tyurnev, Microwave Opt. Tech. Lett. 58, 1883 (2016).CrossRefGoogle Scholar
  7. 7.
    S. J. Oldenburg, (2017).Google Scholar
  8. 8.
    G. Mie, Ann. Phys. 25, 377 (1908).CrossRefGoogle Scholar
  9. 9.
    J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, London, 1941), Chap. 9.zbMATHGoogle Scholar
  10. 10.
    F. Frezza, F. Mangini, and N. Tedeschi, J. Opt. Soc. Am. A 35, 163 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Astapenko and S. Yu. Svita, J. Exp. Theor. Phys. 121, 385 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford Univ. Press, Oxford, 2016).Google Scholar
  13. 13.
    W. T. Doyle, Phys. Rev. B 39, 9852 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    D. J. Bergman, Solid State Phys. 56, 147 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    V. N. Pustovit, T. V. Shahbazyan, and L. G. Grechko, Eur. Phys. J. B 69, 369 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    M. Sancho and G. Martinez, J. Electrostat. 22, 319 (1989).Google Scholar
  17. 17.
    J. C. Maxwell Garnett, Phil. Trans. R. Soc. London A 203, 385 (1904).ADSCrossRefGoogle Scholar
  18. 18.
    A. Sihvola, J. Electromag. Waves Appl. 15, 715 (2001).Google Scholar
  19. 19.
    L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, Phys. Usp. 50, 595 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    M. Scheller, C. Jansen, and M. Koch, in RecentOptical and Photonic Technologies, Ed. by K. Y. Kim (Intech, Croatia, Vukovar, 2010), p. 231.Google Scholar
  21. 21.
    D. A. G. Bruggeman, Ann. Phys., Ser. 5 24, 636 (1935).Google Scholar
  22. 22.
    R. Ruppin, Opt. Commun. 182, 273 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    C. A. Grimes and D. M. Grimes, Phys. Rev. B 43, 10780 (1991).ADSCrossRefGoogle Scholar
  24. 24.
    A. Lakhtakia, Optik 91, 134 (1992).Google Scholar
  25. 25.
    C. A. Foss, G. L. Hornyak, J. A. Stockert, et al., J. Phys. Chem. 98, 2963 (1994).CrossRefGoogle Scholar
  26. 26.
    N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seuglinget, al., J. Phys. Chem. B 102, 361 (1998).CrossRefGoogle Scholar
  27. 27.
    D. Zhang, E. Cherkaev, and M. P. Lamoureux, Appl. Math. Comp. 217, 7092 (2011).CrossRefGoogle Scholar
  28. 28.
    C. F. Bohren, J. Atmosph. Sci. 43, 468 (1986).Google Scholar
  29. 29.
    S. Kedenburg, M. Vieweg, and H. Giessen, Opt. Mater. Express 2, 1588 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    P. Mallet, C. A. Guérin, and A. Sentenac, Phys. Rev. B 72, 014205 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    I. V. Timofeev, Extended Abstract of Doctoral (Phys. Math.) Dissertation (Inst. Phys. Siberian Branch of RAS, Krasnoyarsk, 2017). ref_timofeev.pdf.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussia

Personalised recommendations