Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 4, pp 731–741 | Cite as

Aging Effects in the Nonequilibrium Behavior of Magnetic Superstructures and Their Manifestation in Magnetoresistance

  • V. V. Prudnikov
  • P. V. Prudnikov
  • M. V. Mamonova
ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • 6 Downloads

Abstract

The nonequilibrium behavior of the magnetic superstructures consisting of alternating magnetic and nonmagnetic nanolayers is numerically simulated by Monte Carlo methods. An analysis of the calculated two-time dependence of an autocorrelation function during the evolution from a high-temperature initial state has revealed aging effects, which are characterized by slowing down of the correlation effects in the system when the waiting time increases. In contrast to bulk magnetic systems, the aging effects are shown to appear in magnetic superstructures both near the critical ferromagnetic ordering temperature Tc in films and in a low-temperature phase at TTc. The aging effects in the correlation processes in a magnetic multilayer structure weaken when ferromagnetic film thickness N increases at T = Tc(N), and these effects increase with film thickness N at temperatures T = Tc(N)/2. When simulating the transport properties of the Co/Cu(001)/Co structure, we calculated the temperature dependence of equilibrium magnetoresistance and were the first to reveal the influence of nonequilibrium behavior of the structure on the magnetoresistance and the manifestation of the aging effects in it.

Notes

REFERENCES

  1. 1.
    C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Progr. Phys. 71, 056501 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    G. Bihlmayer, P. Ferriani, S. Baud, M. Lezaic, S. Heinze, and S. Blugel, in NIC Series, Vol. 32: Proceedings of the NIC Symposium 2006, Ed. by G. Munster, D. Wolf, and M. Kremer (Julich, 2006), p. 151.Google Scholar
  3. 3.
    Y. Li and K. Baberschke, Phys. Rev. Lett. 68, 1208 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    F. Huang, M. T. Kief, G. J. Mankey, and R. F. Willis, Phys. Rev. B 49, 3962 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    J. A. C. Bland and B. Heinrich, Ultrathin Magnetic Structures IV (Springer, Berlin, 2005).CrossRefGoogle Scholar
  6. 6.
    V. V. Ustinov, M. A. Milyaev, and L. I. Naumova, SPIN 04, 1440001 (2014).CrossRefGoogle Scholar
  7. 7.
    M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    G. Binash, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    A. Barthelemy and A. Fert, Phys. Rev. B 43, 13124 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    M. Julliere, Phys. Lett. A 54, 225 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    R. C. Sousa, J. J. Sun, V. Soares, P. P. Freitas, A. Kling, M. F. da Silva, and J. C. Soares, Appl. Phys. Lett. 73, 3288 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    T. Mukherjee, M. Pleimling, and Ch. Binek, Phys. Rev. B 82, 134425 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    V. V. Prudnikov, P. V. Prudnikov, A. N. Purtov, and M. V. Mamonova, JETP Lett. 104, 776 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    E. Vincent, J. Hammann, M. Ocio, J. P. Bouchaud, and L. F. Cugliandolo, Lect. Notes Phys. 492, 184 (1997).Google Scholar
  16. 16.
    L. Berthier and J. Kurchan, Nat. Phys. 9, 310 (2013).CrossRefGoogle Scholar
  17. 17.
    P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Phys. Usp. 60, 762 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    V. V. Prudnikov, A. N. Vakilov, and P. V. Prudnikov, Phase Transitions and Methods of Their Computer Simulation (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  20. 20.
    V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Theoretical Methods of Description of Non-Equilibrium Critical Behavior of Structurally Disordered Systems (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  21. 21.
    P. V. Prudnikov, V. V. Prudnikov, and M. A. Medvedeva, JETP Lett. 100, 446 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    P. V. Prudnikov, V. V. Prudnikov, M. A. Menshikova, and N. I. Piskunova, J. Magn. Magn. Mater. 387, 77 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    V. V. Prudnikov, P. V. Prudnikov, and D. E. Romanovskiy, J. Phys. D 49, 235002 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1982; Pergamon, Oxford, 1979).Google Scholar
  25. 25.
    Sh. Ma, Modern Theory of Critical Phenomena (Benjamin, New York, 1976).Google Scholar
  26. 26.
    V. S. Dotsenko, Phys. Usp. 36, 457 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    Z. Q. Qiu, J. Pearson, and S. D. Bader, Phys. Rev. Lett. 67, 1646 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    B. Heinrich, T. Monchesky, and R. Urban, J. Magn. Magn. Mater. 236, 339 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    A. Hahlin, C. Andersson, J. Hunter Dunn, B. Sanyal, O. Karis, and D. Arvanitis, Phys. Rev. B 73, 134423 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    S. T. Bramwell and P. C. W. Holdsworth, J. Phys: Condens. Matter 5, L53 (1993).ADSGoogle Scholar
  31. 31.
    S. T. Bramwell and P. C. W. Holdsworth, J. Appl. Phys. 73, 6096 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    L. Schulke and B. Zheng, Phys. Lett. A 215, 81 (1996).ADSCrossRefGoogle Scholar
  33. 33.
    V. V. Prudnikov, P. V. Prudnikov, B. Zheng, S. V. Dorofeev, and V. Yu. Kolesnikov, Prog. Theor. Phys. 117, 973 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    V. V. Prudnikov, P. V. Prudnikov, A. S. Krinitsyn, A. N. Vakilov, E. A. Pospelov, and M. V. Rychkov, Phys. Rev. E 81, 011130 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    P. V. Prudnikov, V. V. Prudnikov, E. A. Pospelov, P. N. Malyarenko, and A. N. Vakilov, Progr. Theor. Exp. Phys. 2015, 053A01 (2015).Google Scholar
  36. 36.
    M. A. M. Gijs and G. E. W. Bauer, Adv. Phys. 46, 285 (1997).ADSCrossRefGoogle Scholar
  37. 37.
    M. A. M. Gijs, J. B. Giesberg, M. T. Johnson, et al., J. Appl. Phys. 75, 6709 (1994).ADSCrossRefGoogle Scholar
  38. 38.
    V. V. Prudnikov, P. V. Prudnikov, and D. E. Romanovskii, JETP Lett. 102, 668 (2015).ADSCrossRefGoogle Scholar
  39. 39.
    J. Mathon, Contemp. Phys. 32, 143 (1991).ADSCrossRefGoogle Scholar
  40. 40.
    M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions (Springer, Heidelberg, 2010), Vol. 2, p. 544.CrossRefzbMATHGoogle Scholar
  41. 41.
    V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, J. Exp. Theor. Phys. 118, 401 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Prudnikov
    • 1
  • P. V. Prudnikov
    • 1
  • M. V. Mamonova
    • 1
  1. 1.Omsk State UniversityOmskRussia

Personalised recommendations