Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 4, pp 753–760 | Cite as

Temperature Dependence of Paramagnetic Critical Magnetic Field in Disordered Attractive Hubbard Model

  • E. Z. Kuchinskii
  • N. A. Kuleeva
  • M. V. Sadovskii
ELECTRONIC PROPERTIES OF SOLID
  • 1 Downloads

Abstract

Within the generalized DMFT+Σ approach, we study disorder effects in the temperature dependence of paramagnetic critical magnetic field Hcp(T) for Hubbard model with attractive interaction. We consider the wide range of attraction potentials U—from the weak coupling limit, when superconductivity is described by BCS model, up to the limit of very strong coupling, when superconducting transition is related to Bose–Einstein condensation (BEC) of compact Cooper pairs. The growth of the coupling strength leads to the rapid growth of Hcp(T) at all temperatures. However, at low temperatures, paramagnetic critical magnetic field Hcp grows with U much more slowly, than the orbital critical field, and in BCS limit, the main contribution to the upper critical magnetic filed is of paramagnetic origin. The growth of the coupling strength also leads to the disappearance of the low temperature region of instability towards type I phase transition and Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase, characteristic of BCS weak coupling limit. Disordering leads to the rapid drop of Hcp(T) in BCS weak coupling limit, while in BCS–BEC crossover region and BEC limit Hcp(T → 0) dependence on disorder is rather weak. Within DMFT+Σ approach, disorder influence on Hcp(T) is of universal nature at any coupling strength and is related only to disorder widening of the conduction band. In particular, this leads to the drop of the effective coupling strength with disorder, so that disordering restores the region of type I transition in the intermediate coupling region.

Notes

ACKNOWLEDGMENTS

This work was performed under the State Contract no. 0389-2014-0001 with partial support of RFBR Grant no. 17-02-00015 and the Program of Fundamental Research of the RAS Presidium no. 12 “Fundamental problems of high-temperature superconductivity.”

REFERENCES

  1. 1.
    P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    D. Vollhardt, AIP Conf. Proc. 1297, 339 (2010); arXiV: 1004.5069.Google Scholar
  5. 5.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 82, 198 (2005); arXiv: cond-mat/0506215.ADSCrossRefGoogle Scholar
  6. 6.
    M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Prushke, and V. I. Anisimov, Phys. Rev. B 72, 155105 (2005); arXiV: cond-mat/0508585.Google Scholar
  7. 7.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Low Temp. Phys. 32, 398 (2006); arXiv: cond-mat/0510376.ADSCrossRefGoogle Scholar
  8. 8.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B 75, 115102 (2007); arXiv: cond-mat/0609404.ADSCrossRefGoogle Scholar
  9. 9.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Usp. 53, 325 (2012); arXiv:1109.2305.Google Scholar
  10. 10.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, J. Exp. Theor. Phys. 106, 581 (2008); arXiv: 0706.2618.ADSCrossRefGoogle Scholar
  11. 11.
    E. Z. Kuchinskii and M. V. Sadovskii, J. Exp. Theor. Phys. 122, 509 (2016); arXiv:1507.07654Google Scholar
  12. 12.
    N. A. Kuleeva, E. Z. Kuchinskii, and M. V. Sadovskii, J. Exp. Theor. Phys. 119, 264 (2014); arXiv: 1401.2295.CrossRefGoogle Scholar
  13. 13.
    E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, JETP Lett. 100, 192 (2014); arXiv: 1406.5603.CrossRefGoogle Scholar
  14. 14.
    E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, J. Exp. Theor. Phys. 120, 1055 (2015); arXiv:1411.1547.ADSCrossRefGoogle Scholar
  15. 15.
    E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, J. Exp. Theor. Phys. 125, 1127 (2017); arXiv:1709.03895Google Scholar
  16. 16.
    P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964).ADSCrossRefGoogle Scholar
  17. 17.
    A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1964).Google Scholar
  18. 18.
    D. Saint-James, G. Sarma, and E. J. Thomas, Type II Superconductivity (Pergamon, Oxford, 1969).Google Scholar
  19. 19.
    R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 60, 395 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute for Electrophysics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Mikheev Institute for Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations