Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 4, pp 713–720 | Cite as

Superexchange Interaction in Magnetic Insulators with Spin Crossover

  • V. A. Gavrichkov
  • S. I. Polukeev
  • S. G. Ovchinnikov
ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • 11 Downloads

Abstract

We present the derivation of a microscopic superexchange Hamiltonian for undoped magnetic insulators with an arbitrary spin. It is established that the sign of the (ferromagnetic or antiferromagnetic) superexchange between magnetic ions in the dn configuration depends on the spin nature of virtual multielectron states dn± 1, viz., low-spin or high-spin partners with S ± 1/2 relative to ground state of the dn configuration with spin S. A macroscopic substantiation is given for the Goodenough–Kanamori rules and simple mean-field estimates connecting the magnetic ordering temperature with the exchange constant. The conventional Anderson superexchange for magnetic materials with spin S = 1/2 and the P/T magnetic phase diagram for ferroborate FeBO3 with spin crossover S = (5/2 ↔ 1/2) at the Fe3+ ion under a high pressure are also reproduced as a test.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 18-12-00022).

REFERENCES

  1. 1.
    I. S. Lyubutin and A. G. Gavrilyuk, Phys. Usp. 52, 989 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    A. G. Gavriliuk, I. A. Trojan, I. S. Lyubutin, S. G. Ovchinnikov, and V. A. Sarkissian, J. Exp. Theor. Phys. 100, 688 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    S. G. Ovchinnikov, V. I. Anisimov, I. A. Nekrasov, and Z. V. Pchelkina, Phys. Met. Metallogr. 99, S93 (2005).Google Scholar
  4. 4.
    V. V. Eremenko and A. I. Belyaeva, Sov. Phys. Usp. 12, 320 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Eremenko and V. V. Shapiro, Spectroscopy of Crystals (Nauka, Leningrad, 1989), p. 137 [in Russian].Google Scholar
  6. 6.
    V. A. Gavrichkov, Z. V. Pchelkina, I. A. Nekrasov, and S. G. Ovchinnikov, Int. J. Mod. Phys. B 30, 1650180 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    V. A. Gavrichkov, S. I. Polukeev, and S. G. Ovchinnikov, Phys. Rev. B 95, 144424 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. S. Orlov, S. V. Nikolaev, A. I. Nesterov, and S. G. Ovchinnikov, JETP Lett. 105, 771 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    V. Yu. Irkhin and Yu. P. Irkhin, Phys. Status Solids B 183, 9 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    V. Yu. Irkhin and Yu. P. Irkhin, J. Exp. Theor. Phys. 78, 936 (1994).ADSGoogle Scholar
  11. 11.
    V. A. Gavrichkov, A. Borisov, S. G. Ovchinnikov, and E. G. Goryachev, J. Exp. Theor. Phys. 91, 369 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    S. G. Ovchinnikov, V. A. Gavrichkov, M. M. Korshunov, and E. I. Shneyder, Springer Ser. Solid-State Sci. 171, 147 (2012).Google Scholar
  13. 13.
    K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C: Sol. St. Phys. 10, L271 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    H. Eskes and J. H. Jefferson, Phys. Rev. B 48, 9788 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Ohta, T. Tohyama, and S. Maekawa, Phys. Rev. Lett. 66, 1228 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    H. Eskes, G. A. Sawatzky, and L. F. Feiner, Phys. C (Amsterdam, Neth.) 160, 424 (1989).Google Scholar
  17. 17.
    E. B. Stechel and D. R. Jennison, Phys. Rev. B 38, 4632 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    J. F. Annett, R. M. Martin, A. K. McMahan, and S. Satpathy, Phys. Rev. B 40, 2620 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 61, 8906 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    V. V. Mazurenko and V. I. Anisimov, Phys. Rev. B 71, 184434 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    D. W. Boukhvalov, A. I. Lichtenstein, V. V. Dobrovitski, M. I. Katsnelson, B. N. Harmon, V. V. Mazurenko, and V. I. Anisimov, Phys. Rev. B 65, 184435 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    L. F. Feiner, J. H. Jefferson, and R. Raimondi, Phys. Rev. B 53, 8751 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    B. S. Shastry, Phys. Rev. Lett. 63, 1288 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    V. A. Gavrichkov, Solid State Commun. 208, 11 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    V. A. Gavrichkov, A. A. Borisov, and S. G. Ovchinnikov, Phys. Rev. B 64, 235124 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    V. A. Gavrichkov, S. G. Ovchinnikov, and L. E. Yakimov, J. Exp. Theor. Phys. 102, 972 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    S. G. Ovchinnikov and V. N. Zabluda, J. Exp. Theor. Phys. 98, 135 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    K. I. Kugel’ and D. I. Khomskii, Sov. Phys. JETP 37, 725 (1973).Google Scholar
  29. 29.
    J. Goodenough, Magnetism and the Chemical Bond (Wiley Interscience, New York, 1963).Google Scholar
  30. 30.
    J. Kanamori, Magnetism (Academic, New York, London, 1963), Vol. 1.Google Scholar
  31. 31.
    S. G. Ovchinnikov, J. Exp. Theor. Phys. 107, 140 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    S. G. Ovchinnikov, J. Exp. Theor. Phys. 116, 123 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    J. S. Smart, Effective Field Theories of Magnetism (Saunders, London, 1966; Mir, Moscow, 1968).Google Scholar
  34. 34.
    H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ., Oxford, New York 1971; Mir, Moscow, 1973).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. A. Gavrichkov
    • 1
  • S. I. Polukeev
    • 1
  • S. G. Ovchinnikov
    • 1
  1. 1.Kirensky Institute of Physics, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations