Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 3, pp 581–586 | Cite as

Quasi-Stable Configurations of Torus Vortex Knots and Links

  • V. P. RubanEmail author
Statistical, Nonlinear, and Soft Matter Physics

Abstract

The dynamics of torus vortex configurations Vn, p, q in a superfluid liquid at zero temperature (n is the number of quantum vortices, p is the number of turns of each filament around the symmetry axis of the torus, and q is the number of turns of the filament around its central circle; radii R0 and r0 of the torus at the initial instant are much larger than vortex core width ξ) has been simulated numerically based on the regularized Biot–Savart law. The lifetime of vortex systems till the instant of their substantial deformation has been calculated with a small step in parameter B0 = r0/R0 for various values of parameter Λ = ln(R0/ξ). It turns out that for certain values of n, p, and q, there exist quasi-stability regions in the plane of parameters (B0, Λ), in which the vortices remain almost invariable during dozens and even hundreds of characteristic lengths.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Thomson (Lord Kelvin), Proc. R. Soc. Edinburgh 9, 59 (1875).CrossRefGoogle Scholar
  2. 2.
    D. Kleckner and W. T. M. Irvine, Nat. Phys. 9, 253 (2013).CrossRefGoogle Scholar
  3. 3.
    R. L. Ricca, D. C. Samuels, and C. F. Barenghi, J. Fluid Mech. 391, 29 (1999).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    F. Maggioni, S. Alamri, C. F. Barenghi, and R. L. Ricca, Phys. Rev. E 82, 026309 (2010).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    O. Velasco Fuentes, Theor. Comput. Fluid Dyn. 24, 189 (2010).CrossRefGoogle Scholar
  6. 6.
    A. Romero Arteaga, Master’s Thesis (CICESE, Ensenada, Mexico, 2011).Google Scholar
  7. 7.
    O. Velasco Fuentes and A. Romero Arteaga, J. Fluid Mech. 687, 571 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    D. Proment, M. Onorato, and C. F. Barenghi, Phys. Rev. E 85, 036306 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    D. Proment, M. Onorato, and C. F. Barenghi, J. Phys.: Conf. Ser. 544, 012022 (2014).Google Scholar
  10. 10.
    P. Clark di Leoni, P. D. Mininni, and M. E. Brachet, Phys. Rev. A 94, 043605 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    D. Kleckner, L. H. Kauffman, and W. T. M. Irvine, Nat. Phys. 12, 650 (2016).CrossRefGoogle Scholar
  12. 12.
    V. P. Ruban, JETP Lett. 107, 307 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    K. W. Schwarz, Phys. Rev. B 31, 5782 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    M. Tsubota, T. Araki, and S. K. Nemirovskii, Phys. Rev. B 62, 11751 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    A. W. Baggaley and C. F. Barenghi, Phys. Rev. B 83, 134509 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations